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II.  Application of text about 

acknowledgement of EU funding 

Beneficiaries often have an obligation prescribed by 

regulation or contract to publicly acknowledge the 

support received from the European Union. This  

section gives a non-exhaustive range of examples 

of how text shall be used in conjunction with the EU 

emblem to communicate about EU funding.

The preferred option to communicate about EU  

funding is to write “Funded by the European Union” or 

“Co-funded by the European Union” as appropriate 

next to the EU emblem on the communication  

material where the EU emblem is used. The name of 

the EU programme (see Section IV.) shall only be used 

if it is relevant for the intended target audience.

Basic rules

The minimum height of the EU emblem shall be 1 cm.

The name of the European Union shall always be 

spelled out in full.

The typeface to be used in conjunction with the  

EU emblem can be any of the following: Arial, Calibri, 

Garamond, Trebuchet, Tahoma, Verdana. 

Italic and underlined variations and the use of font 

effects are not allowed.

The positioning of the text in relation to the EU em-

blem is not prescibed in any particular way but the text 

should not interfere with the emblem in any way.

The font size used should be proportionate to the size 

of the emblem.

The colour of the font should be reflex blue (same blue 

colour as the EU flag), black or white depending on the 

background.

Funded by 
the European Union

This project is funded by 
the European Union

Co-funded by 
the European Union

This project is co-funded by 
the European Union

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska- Curie grant agreement No 777695
Disclaimer: This work reflects only the author's view and that the EU Agency is not responsible for any use that may be made of the information it contains.
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1. Context & Background
Knowledge Discovery in Time Series (TS)

• Motif Matching
• (Frequent) Pattern Discovery
• Anomaly Detection
• Time Series Classification/Clustering, etc.

Knowledge Discovery in Data Streams (DS) & Challenges1

• Infinite Length ☞ Memory Cost
• Feature Evolution ☞ Incrementality of learning model
• Concept Drift ☞ Adaptive adjustment of learning model
• Concept Evolution ☞ Emergence of new classes

1. M. M. Masud, Q. Chen, J. Gao, L. Khan, J. Han, B. Thuraisingham, “Classification and Novel Class Detection of Data Streams in a Dynamic Feature Space”, ECML-PKDD’10

Light cu
rve

of a su
pernova
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1. Context & New Mining directions

A combination which covers more practical scenarios !

Time Series + Data Stream = ?
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Time Series Stream 𝑺𝑻𝑺
• A continuous input data stream where each instance is a Time Series:

𝑆$% = 𝑇(, 𝑇*, … , 𝑇, , notice that N increases with each new time-tick.

Use Cases:

• Medical domain
Patient TS database is getting bigger and bigger 

• Astronomy discovery
New detection of the star light curves, update the features inside the Learning Model

1. Context & Definitions

…Database

Enrich

Health Care

T0

T1

TN

…

t

Our context
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Time Series Stream 𝑺𝑻𝑺
• A continuous input data stream where each instance is a Time Series:

𝑆$% = 𝑇(, 𝑇*, … , 𝑇, , notice that N increases with each new time-tick.

Use Cases:

• Medical domain
Patient TS database is getting bigger and bigger 

• Astronomy discovery
New detection of the star light curves, update the features inside the Learning Model

1. Context & Definitions

…Database

Enrich

Health Care

Streaming Time Series S
• A continuous input data stream where each instance is a real-valued data: 𝑆 = (𝑡(, 𝑡*, … , 𝑡,)

t0 t1 …
t

tN Smart City Sensor

T0

T1

TN

…

t

Our context

Out of scope
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1. Objectives of Time Series Stream Mining

Classic Data Stream Mining
• Row or vector data with multiple 

attributes without assumption of 
temporal dependence

Time Series Mining
• Real valued data with high temporal 

dependence
• Feature Representation is the essential 

part in the mining process

Interpretable, Incremental, Adaptive features in streaming context

5



1. Filling the Gap between TS & DS Mining

1. L. Ye and E. Keogh. “Time series shapelets: A New Primitive for Data Mining.” In Proc. SIGKDD 2009
2. M. M. Masud, Q. Chen, J. Gao, L. Khan, J. Han, and B. Thuraisingham, “Classification and Novel Class Detection of Data Streams in a Dynamic

Feature Space”, ECML-PKDD’10

Time Series Feature Representations

R1 Global features of entire series (1-NN)

R2 Summary statistics of intervals/sub-series

R3 Motif (frequent patterns) 

R4 Shapelet 1 (shape-based features) 

…

Data Stream Challenges 2

C1 Infinite Length

C2 Feature Evolution

C3 Concept Drift

C4 Concept Evolution 

R4 + {C1, C2, C3}

6



1. L. Ye and E. Keogh. “Time series shapelets: A New Primitive for Data Mining.” In Proc. SIGKDD 2009
2. X. Wang et al. “RPM: Representative Pattern Mining for Efficient Time Series Classification.” , In Proc. EDBT’16

Definition
• A representative shape in Time Series which is capable of distinguishing one class from the others

Figure 12: Two classes from the ”ECGFiveDays” dataset and the best representative patterns (Shapelets)

Why Shapelet1?
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Feature Evolution over Shapelets

Dataset Trace1 (class 2)

Time stamp = 20 Time stamp = 100

1. UCR Archive: https://www.cs.ucr.edu/~eamonn/time_series_data_2018/ 8

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/


Concept Drift over Shapelets

1. UCR Archive: https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

Dataset Trace1 (class 2)

Time stamp = 100 Time stamp = 200

9
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1. Problems to tackle 

• Low Scalability and Incrementality of Shapelet approaches

• Classic Shapelet Evaluation is not suitable in streaming context

• Concept Drift detection in TS Stream model

• Memory cost of infinite TS instances

10



2. Preliminaries
Distance Profile & Matrix Profile1
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Figure 2.1: Distance Profile between Query 𝑇0,1 and
target time series 𝑇′, where 𝑛4 is the length of 𝑇′. 𝐷𝑃0,7
can be considered as a meta TS annotating target 𝑇′

Figure 2.2: Matrix Profile between Source 𝑇 and 
Target 𝑇′, where 𝑛 is the length of 𝑇. Intuitively, 𝑀𝑃0
shares the same offset as source T

1. Chin-Chia Michael Yeh et al. “Matrix Pro le I: All Pairs Similarity Joins for Time Series: A Unifying View That Includes Motifs,
Discords and Shapelets.” In Proc. ICDM 2016

Ø Find the Nearest Neighbor of the Query Ø Find the closest pairs between two TS
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2. Preliminaries - Our previous work

SMAP 1 (Shapelet Extraction on Matrix Profile)
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1. J. Zuo, K. Zeitouni, and Y. Taher, “Exploring interpretable features for large time series with SE4TeC.” In Proc. EDBT 2019,
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1. J. Zuo, K. Zeitouni, and Y. Taher, “Exploring interpretable features for large time series with SE4TeC.” In Proc. EDBT 2019

Cache Dataset in HDFS. 
• MapPartition (Set of <ID, T>)

T. distThresh ← RepresentativeProfile(T, DC)
T. DiscmP ← ComputeDiscriminativeProfile(T, D)
emit (ID, T)

Representative 
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Discriminative 
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Matrix Profile
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Cache Dataset in HDFS. 
• MapPartition (Set of <ID, T>)

T. distThresh ← RepresentativeProfile(T, DC)
T. DiscmP ← ComputeDiscriminativeProfile(T, D)
emit (ID, T)

• MapAggregation (class, (ID, T))
=𝑆 ← getTopK(aggregation(T. DiscmP))
return =𝑆

Representative 
Profile

Discriminative 
Profile

Matrix Profile
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3. Our proposal

3
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Caching
Mechanism

Cache TS Chunk / TN in HDFS

1. MapPartition (Set of (ID, T))
T. distThresh← UpdateRepresentativeProfile(T, TN)
T. DiscmP ← UpdateDiscriminativeProfile(T, TN)
𝑀𝑃TN ← computeMP(TN, T)

emit (ID, T, 𝑀𝑃TN )

Update the discriminative power of existing Shapelets

computeMP(T, TN)

3. Our proposals - Incremental SMAP (ISMAP)
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3. Our proposals - Incremental SMAP (ISMAP)
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where

h(T ) =
n

C, if dist(T, ŝ)  ŝ.distThresh
nonC, otherwise

However, by TS-Shapelet inclusion technique, two Time
Series with similar distance to a Shapelet may obtain different
classes. In addition, a good prediction result of input TS
instance with current Shapelets doesn’t mean that the instance
contains no useful information for adjusting the learning
model. The 0-1 Loss Function analyzes the surface phe-
nomenon of the prediction but ignored the deep information
behind the arbitrary split point technique. A loss measured by
a crisp 0-1 Loss Function is then ill-adapted.

When dist(T, ŝ)  ŝ.distThresh, the prediction result is
relatively acceptable. The problem then becomes how to find a
balance between time efficiency and TS information checking
(i.e., the exhaustive information extraction). The distance
between TS and Shapelets describes the shift between real and
learned concept, a small distance leads to a reliable prediction
result. As the distance measure is usually data-dependant,
and the absolute distance value varies with datasets, then
a normalized measure describing the shift scale is required.
To this end, can we just convert the TS-Shapelet inclusion
problem to the possibility that a TS contains the Shapelet?

As extracted Shapelets try to separate one class to oth-
ers, TSs in different classes tend to be concentrated on the
split point, which causes the main error in prediction. Then
we assume that dist(T, ŝ) satisfies Gaussian distribution, as
shown in Equation 6, the loss can be smoothed by Sigmoid
function by considering distance distribution. The split point
of ŝ defines the expectation � of the distribution.

L(Y, h(T )) =
1

1 + e�(x��)
, � = ŝ.distThresh

x = min(dist(TC , ŝ)), ŝ 2 ŜC
(6)

As shown in Fig. 3, the smaller the loss, the greater the
possibility that T will contain the Shapelet. Intuitively, a loss
threshold � can be set by user for ISMAP to control the
extraction from input instance, and update incrementally the
Shapelet to approach the real concept of data source. When
� is set to 0.5, it has the same effect as 0-1 Loss Function.

TC

Dist(T, Shapelet
C

)

TNonC

Fig. 3: Loss measure of Time Series by Sigmoid Function and 0-1
Loss Function, Time Series in different classes are distributed around
the split point of Shapelet

However, a stable concept does not hold in several real-life
scenarios. For instance, with the soundness of the knowledge
in a particular domain, the labeling of newly input instances
may evolve gradually, leading to a concept drift. Therefore,
the most recent training instances should contribute more than
the oldest ones to the target prediction. Then the problem
becomes the Concept Drift detection in a Time Series Stream
by monitoring the loss function. Conserving the interpretability
and explainability of the algorithm, ISMAP can be extended
to the context of TS Stream by extracting adaptive features.

C. Adaptive feature extraction from Time Series Stream
As shown in Fig. 4, the system of extracting adaptive

Shapelets from Time Series Stream is composed by Shapelet
Extraction, Evaluation Bloc and Caching Mechanism. We take
TS Chunk Ct,w as minimum input unit which contains a
number of continuous TS instances: Ct,w=(Tt�w+1, Tt�w+2,
..., Tt), where t is the time-tick, w is the window size. By
adopting the Test-then-Train strategy, the main idea here is to
evaluate continuously the shift between learned concept and
real concept in data source (i.e., Test). Once a Concept Drift
is detected, the input chunk will be imported into Shapelet
Extraction bloc to update the learning model (i.e., Train). Both
Shapelet initialization and updating process are parallelizable
on Spark cluster, which makes use of RAM as caching unit
to lower the I/O cost.

3
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Fig. 4: System Structure in TS Stream context with Concept Drift

1) Shapelet Extraction: The computing process follows the
same methodology with ISMAP, which allows TS instances
in the input chunk to be partitioned on various Spark nodes,
the discriminative patterns in each partition will be extracted
individually and merged between partitions by their ranking
power. The Shapelet ranking list is then composed by power-
updated existing Shapelets and newly imported candidates.

2) Learned Concept Evaluation: As aforementioned, the
loss of a Shapelet on input instances can describe its shift to
real concept of data source. With the same methodology, when
there is a concept drift in data stream, the analysis tends to
be more complicated. The challenge here is to distinguish the
measured loss from two aspects:
- Incomplete Extraction: As main constraint in Shapelet Ex-
traction, insufficient training instances (i.e., under-fitting) will
bring a relative high loss. More data will make the learning
model approach more the inner concept.

- Concept Drift: The measured shift can only reflect the
distance to a stable concept, a big shift will be observed
using out-of-date learning model.

III. ALGORITHM AND SYSTEM STRUCTURE

In this section, we start by studying the incrementality
of SMAP, which is a necessary condition for learning in
streaming context. Then we propose the evaluation strategies
to accelerate incremental learning process and adapting it to
streaming context considering Concept Drift.

A. Incremental SMAP (ISMAP)
Typically, a non-incremental algorithm requires to re-pass

the existing dataset and conduct a large amount of redundant
computations. In Algorithm 2, we show Incremental Shapelet
extraction on Matrix Profile on Spark (ISMAP), which avoids
essentially the repetitive computations on existing dataset.
As in Spark environment, the communication cost between
distributed nodes is a key factor of system’s efficiency. The
computing task in each Spark partition should be relatively
independent without frequent exchange of intermediate results
with other partitions. In light of this, we need to make use
of the parallel mechanism to well manage the allocation of
computing tasks.

Algorithm 2: ISMAP(Incremental Shapelet extraction on MAtrix Profile on Spark)

Input: Partition [ID, T,DiscmP, distThresh], New input TN , classSet Ĉ,
k

Output: Ŝ
1 lmin  0.1 ⇤ getMinLen(D), lmax  0.5 ⇤ getMinLen(D),
2 DiscmP  [], distThresh  [], Ŝ  ;
3 hIDN , TN i.broadcast();
4 MapPartition ([ID, T,DiscmP, distThresh])
5 /* 1. compute the Matrix Profile between TN and all TS in dataset */
6 /* 2. update the current DiscmP of all TS in dataset */
7 /* 3. prepare MPTN

elements to compute DiscmPTN
*/

8 for m lmin to lmax do

9 MPT [m] computeMP (T, TN ,m)
10 MPTN

[m] computeMP (TN , T,m)
11 DiscmP [m], distThresh[m] 

updateDiscmP (DiscmP [m], distThresh[m],MPT [m])

12 DiscmP, distThresh  pruning(DiscmP, distThresh)
13 emit(ID, T,DiscmP, distThresh,MPTN

)

14 MapAggregation (⇤, (ID, T,DiscmP, distThresh,MPTN
))

15 DiscmPTN
, distThreshTN

=
computeDiscmP (collect(MPTN

))

16 DiscmPTN
 DiscmP ⇤

p
1/l

17 DiscmPTN
, distThreshTN

 
pruning(DiscmPTN

, distThreshTN
)

18 cache(IDTN
, DiscmPTN

, distThreshTN
)

19 MapAggregation (class, (ID,DiscmP, distThresh))
20 for c 2 Ĉ do

21 Ŝ0  getTopk(DiscmP [c], distThresh[c], k)

22 Ŝ  Ŝ [ Ŝ0

23 return Ŝ

As shown in Algorithm 2, we assume that each Spark
partition keeps a set of Time Series with their Discriminative
Profiles and corresponding Threshold Distance sets. The newly
input Time Series TN will be broadcast to each distributed
node. Information in TN should be extracted and merged to
existing knowledge base, which can be carried out into two
steps:

1) Update existing Shapelets: With newly input instance
TN , existing candidate Shapelets should update their
representative power in each class, and discriminative
power in current dataset.

2) Evaluate new candidate Shapelets: TN will introduce
new candidate Shapelets of various length, which should
be evaluated and placed into Shapelet ranking list by their
discriminative power.

Step (1) is shown in line 8,10, from the Formula 2 and
3, we can observe that the linearity of Discriminative Profile
makes the fact that each existing TS only need one single
Matrix Profile computation with TN to update the candidate
Shapelets. As for Step (2), the Discriminative Profile com-
puting of TN is shared on different Spark partitions, where
Matrix Profiles with existing TS instances are computed in
line 9, an aggregation process in line 13-17 extracts the
discriminative patterns in TN , which will be aggregated with
existing candidate Shapelets and update the output results in
line 18-21.

Like classical incremental algorithms, ISMAP takes all input
instances into account, which means every input TS instance
will be imported into the system to update the Shapelet, even
if the computing imports no valuable information into the
system, that is, the information contained in the instance is
repetitive with that in the knowledge base. Evidently, we are
capable of avoiding the redundant information’s computation
by adopting an interleaved Test-then-Train strategy [29] with
an extra Shapelet evaluation process over input instances.

B. Shapelet Evaluation
The intuition behind the evaluation procedure is that once

we have a bad evaluation result, we need to import the instance
batch into Shapelet Extraction process, to update the output
Shapelet result. As the evaluation time O(n � m + 1) for a
TS instance is much less than that of extraction computing
(O(Nn3logn)), then an evaluation module can improve the
system’s efficiency by preventing the computation of certain
valueless instances. However, how to define that an instance
is valueless stays a problem to resolve.

The classical Shapelet-based approach [14] supposes that
a Time Series T can be classified by the inclusion of a
class-specified Shapelet ŝ. (i.e. if dist(T, ŝ)  ŝ.distthresh,
then T.class = ŝ.class). The threshold distance of Shapelet
gives a split point to decide the TS-Shapelet inclusion. As
shown in [30], various approaches (e.g, Information Gain
(IG), Kruskal-Wallis (KW) and Mood’s Median (MM)) can be
applied for both Shapelet assessment and split point decision.
Representative Profile and Discriminative Profile achieve the
same effect with these techniques but in a more interpretable
manner. Intuitively, we are capable of deciding whether to
import a TS instance into Shapelet Extraction process by
evaluating its prediction results on current learning model.
The Loss Measure is intended to detect the shift between the
learning model and the inner concept of data source. In the
context of Shapelet, the distance between the learned Shapelets
and input instance is able to represent the loss to some extent.
Typically, the distance is compared with Shapelets’ threshold
distance, which derives the 0-1 Loss Function:

L(Y, h(T )) =

⇢
0, Y = h(T )
1, Y 6= h(T ) (5)

where

h(T ) =
n

C, if dist(T, ŝ)  ŝ.distThresh
nonC, otherwise

However, by TS-Shapelet inclusion technique, two Time
Series with similar distance to a Shapelet may obtain different
classes. In addition, a good prediction result of input TS
instance with current Shapelets doesn’t mean that the instance
contains no useful information for adjusting the learning
model. The 0-1 Loss Function analyzes the surface phe-
nomenon of the prediction but ignored the deep information
behind the arbitrary split point technique. A loss measured by
a crisp 0-1 Loss Function is then ill-adapted.
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Fig. 3: Loss measure of Time Series by Sigmoid Function and 0-1
Loss Function, Time Series in different classes are distributed around
the split point of Shapelet

However, a stable concept does not hold in several real-life
scenarios. For instance, with the soundness of the knowledge
in a particular domain, the labeling of newly input instances
may evolve gradually, leading to a concept drift. Therefore,
the most recent training instances should contribute more than
the oldest ones to the target prediction. Then the problem
becomes the Concept Drift detection in a Time Series Stream
by monitoring the loss function. Conserving the interpretability
and explainability of the algorithm, ISMAP can be extended
to the context of TS Stream by extracting adaptive features.

C. Adaptive feature extraction from Time Series Stream
As shown in Fig. 4, the system of extracting adaptive

Shapelets from Time Series Stream is composed by Shapelet
Extraction, Evaluation Bloc and Caching Mechanism. We take
TS Chunk Ct,w as minimum input unit which contains a
number of continuous TS instances: Ct,w=(Tt�w+1, Tt�w+2,
..., Tt), where t is the time-tick, w is the window size. By
adopting the Test-then-Train strategy, the main idea here is to
evaluate continuously the shift between learned concept and
real concept in data source (i.e., Test). Once a Concept Drift
is detected, the input chunk will be imported into Shapelet
Extraction bloc to update the learning model (i.e., Train). Both
Shapelet initialization and updating process are parallelizable
on Spark cluster, which makes use of RAM as caching unit
to lower the I/O cost.
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1) Shapelet Extraction: The computing process follows the
same methodology with ISMAP, which allows TS instances
in the input chunk to be partitioned on various Spark nodes,
the discriminative patterns in each partition will be extracted
individually and merged between partitions by their ranking
power. The Shapelet ranking list is then composed by power-
updated existing Shapelets and newly imported candidates.

2) Learned Concept Evaluation: As aforementioned, the
loss of a Shapelet on input instances can describe its shift to
real concept of data source. With the same methodology, when
there is a concept drift in data stream, the analysis tends to
be more complicated. The challenge here is to distinguish the
measured loss from two aspects:
- Incomplete Extraction: As main constraint in Shapelet Ex-
traction, insufficient training instances (i.e., under-fitting) will
bring a relative high loss. More data will make the learning
model approach more the inner concept.

- Concept Drift: The measured shift can only reflect the
distance to a stable concept, a big shift will be observed
using out-of-date learning model.

Shapelet Evaluation
• 0-1 Loss Function (classic methods)

• Sigmoid Loss Function (our proposal)

Evaluation Block (Shapelet Evaluation + Concept Drift Detection)

Figure 2: Shapelet Evaluation over newly input 
TS instances

20



where

h(T ) =
n

C, if dist(T, ŝ)  ŝ.distThresh
nonC, otherwise

However, by TS-Shapelet inclusion technique, two Time
Series with similar distance to a Shapelet may obtain different
classes. In addition, a good prediction result of input TS
instance with current Shapelets doesn’t mean that the instance
contains no useful information for adjusting the learning
model. The 0-1 Loss Function analyzes the surface phe-
nomenon of the prediction but ignored the deep information
behind the arbitrary split point technique. A loss measured by
a crisp 0-1 Loss Function is then ill-adapted.

When dist(T, ŝ)  ŝ.distThresh, the prediction result is
relatively acceptable. The problem then becomes how to find a
balance between time efficiency and TS information checking
(i.e., the exhaustive information extraction). The distance
between TS and Shapelets describes the shift between real and
learned concept, a small distance leads to a reliable prediction
result. As the distance measure is usually data-dependant,
and the absolute distance value varies with datasets, then
a normalized measure describing the shift scale is required.
To this end, can we just convert the TS-Shapelet inclusion
problem to the possibility that a TS contains the Shapelet?

As extracted Shapelets try to separate one class to oth-
ers, TSs in different classes tend to be concentrated on the
split point, which causes the main error in prediction. Then
we assume that dist(T, ŝ) satisfies Gaussian distribution, as
shown in Equation 6, the loss can be smoothed by Sigmoid
function by considering distance distribution. The split point
of ŝ defines the expectation � of the distribution.

L(Y, h(T )) =
1

1 + e�(x��)
, � = ŝ.distThresh

x = min(dist(TC , ŝ)), ŝ 2 ŜC
(6)

As shown in Fig. 3, the smaller the loss, the greater the
possibility that T will contain the Shapelet. Intuitively, a loss
threshold � can be set by user for ISMAP to control the
extraction from input instance, and update incrementally the
Shapelet to approach the real concept of data source. When
� is set to 0.5, it has the same effect as 0-1 Loss Function.
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Fig. 3: Loss measure of Time Series by Sigmoid Function and 0-1
Loss Function, Time Series in different classes are distributed around
the split point of Shapelet

However, a stable concept does not hold in several real-life
scenarios. For instance, with the soundness of the knowledge
in a particular domain, the labeling of newly input instances
may evolve gradually, leading to a concept drift. Therefore,
the most recent training instances should contribute more than
the oldest ones to the target prediction. Then the problem
becomes the Concept Drift detection in a Time Series Stream
by monitoring the loss function. Conserving the interpretability
and explainability of the algorithm, ISMAP can be extended
to the context of TS Stream by extracting adaptive features.

C. Adaptive feature extraction from Time Series Stream
As shown in Fig. 4, the system of extracting adaptive

Shapelets from Time Series Stream is composed by Shapelet
Extraction, Evaluation Bloc and Caching Mechanism. We take
TS Chunk Ct,w as minimum input unit which contains a
number of continuous TS instances: Ct,w=(Tt�w+1, Tt�w+2,
..., Tt), where t is the time-tick, w is the window size. By
adopting the Test-then-Train strategy, the main idea here is to
evaluate continuously the shift between learned concept and
real concept in data source (i.e., Test). Once a Concept Drift
is detected, the input chunk will be imported into Shapelet
Extraction bloc to update the learning model (i.e., Train). Both
Shapelet initialization and updating process are parallelizable
on Spark cluster, which makes use of RAM as caching unit
to lower the I/O cost.
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1) Shapelet Extraction: The computing process follows the
same methodology with ISMAP, which allows TS instances
in the input chunk to be partitioned on various Spark nodes,
the discriminative patterns in each partition will be extracted
individually and merged between partitions by their ranking
power. The Shapelet ranking list is then composed by power-
updated existing Shapelets and newly imported candidates.

2) Learned Concept Evaluation: As aforementioned, the
loss of a Shapelet on input instances can describe its shift to
real concept of data source. With the same methodology, when
there is a concept drift in data stream, the analysis tends to
be more complicated. The challenge here is to distinguish the
measured loss from two aspects:
- Incomplete Extraction: As main constraint in Shapelet Ex-
traction, insufficient training instances (i.e., under-fitting) will
bring a relative high loss. More data will make the learning
model approach more the inner concept.

- Concept Drift: The measured shift can only reflect the
distance to a stable concept, a big shift will be observed
using out-of-date learning model.

III. ALGORITHM AND SYSTEM STRUCTURE

In this section, we start by studying the incrementality
of SMAP, which is a necessary condition for learning in
streaming context. Then we propose the evaluation strategies
to accelerate incremental learning process and adapting it to
streaming context considering Concept Drift.

A. Incremental SMAP (ISMAP)
Typically, a non-incremental algorithm requires to re-pass

the existing dataset and conduct a large amount of redundant
computations. In Algorithm 2, we show Incremental Shapelet
extraction on Matrix Profile on Spark (ISMAP), which avoids
essentially the repetitive computations on existing dataset.
As in Spark environment, the communication cost between
distributed nodes is a key factor of system’s efficiency. The
computing task in each Spark partition should be relatively
independent without frequent exchange of intermediate results
with other partitions. In light of this, we need to make use
of the parallel mechanism to well manage the allocation of
computing tasks.

Algorithm 2: ISMAP(Incremental Shapelet extraction on MAtrix Profile on Spark)

Input: Partition [ID, T,DiscmP, distThresh], New input TN , classSet Ĉ,
k

Output: Ŝ
1 lmin  0.1 ⇤ getMinLen(D), lmax  0.5 ⇤ getMinLen(D),
2 DiscmP  [], distThresh  [], Ŝ  ;
3 hIDN , TN i.broadcast();
4 MapPartition ([ID, T,DiscmP, distThresh])
5 /* 1. compute the Matrix Profile between TN and all TS in dataset */
6 /* 2. update the current DiscmP of all TS in dataset */
7 /* 3. prepare MPTN

elements to compute DiscmPTN
*/

8 for m lmin to lmax do

9 MPT [m] computeMP (T, TN ,m)
10 MPTN

[m] computeMP (TN , T,m)
11 DiscmP [m], distThresh[m] 

updateDiscmP (DiscmP [m], distThresh[m],MPT [m])

12 DiscmP, distThresh  pruning(DiscmP, distThresh)
13 emit(ID, T,DiscmP, distThresh,MPTN

)

14 MapAggregation (⇤, (ID, T,DiscmP, distThresh,MPTN
))

15 DiscmPTN
, distThreshTN

=
computeDiscmP (collect(MPTN

))

16 DiscmPTN
 DiscmP ⇤

p
1/l

17 DiscmPTN
, distThreshTN

 
pruning(DiscmPTN

, distThreshTN
)

18 cache(IDTN
, DiscmPTN

, distThreshTN
)

19 MapAggregation (class, (ID,DiscmP, distThresh))
20 for c 2 Ĉ do

21 Ŝ0  getTopk(DiscmP [c], distThresh[c], k)

22 Ŝ  Ŝ [ Ŝ0

23 return Ŝ

As shown in Algorithm 2, we assume that each Spark
partition keeps a set of Time Series with their Discriminative
Profiles and corresponding Threshold Distance sets. The newly
input Time Series TN will be broadcast to each distributed
node. Information in TN should be extracted and merged to
existing knowledge base, which can be carried out into two
steps:

1) Update existing Shapelets: With newly input instance
TN , existing candidate Shapelets should update their
representative power in each class, and discriminative
power in current dataset.

2) Evaluate new candidate Shapelets: TN will introduce
new candidate Shapelets of various length, which should
be evaluated and placed into Shapelet ranking list by their
discriminative power.

Step (1) is shown in line 8,10, from the Formula 2 and
3, we can observe that the linearity of Discriminative Profile
makes the fact that each existing TS only need one single
Matrix Profile computation with TN to update the candidate
Shapelets. As for Step (2), the Discriminative Profile com-
puting of TN is shared on different Spark partitions, where
Matrix Profiles with existing TS instances are computed in
line 9, an aggregation process in line 13-17 extracts the
discriminative patterns in TN , which will be aggregated with
existing candidate Shapelets and update the output results in
line 18-21.

Like classical incremental algorithms, ISMAP takes all input
instances into account, which means every input TS instance
will be imported into the system to update the Shapelet, even
if the computing imports no valuable information into the
system, that is, the information contained in the instance is
repetitive with that in the knowledge base. Evidently, we are
capable of avoiding the redundant information’s computation
by adopting an interleaved Test-then-Train strategy [29] with
an extra Shapelet evaluation process over input instances.

B. Shapelet Evaluation
The intuition behind the evaluation procedure is that once

we have a bad evaluation result, we need to import the instance
batch into Shapelet Extraction process, to update the output
Shapelet result. As the evaluation time O(n � m + 1) for a
TS instance is much less than that of extraction computing
(O(Nn3logn)), then an evaluation module can improve the
system’s efficiency by preventing the computation of certain
valueless instances. However, how to define that an instance
is valueless stays a problem to resolve.

The classical Shapelet-based approach [14] supposes that
a Time Series T can be classified by the inclusion of a
class-specified Shapelet ŝ. (i.e. if dist(T, ŝ)  ŝ.distthresh,
then T.class = ŝ.class). The threshold distance of Shapelet
gives a split point to decide the TS-Shapelet inclusion. As
shown in [30], various approaches (e.g, Information Gain
(IG), Kruskal-Wallis (KW) and Mood’s Median (MM)) can be
applied for both Shapelet assessment and split point decision.
Representative Profile and Discriminative Profile achieve the
same effect with these techniques but in a more interpretable
manner. Intuitively, we are capable of deciding whether to
import a TS instance into Shapelet Extraction process by
evaluating its prediction results on current learning model.
The Loss Measure is intended to detect the shift between the
learning model and the inner concept of data source. In the
context of Shapelet, the distance between the learned Shapelets
and input instance is able to represent the loss to some extent.
Typically, the distance is compared with Shapelets’ threshold
distance, which derives the 0-1 Loss Function:

L(Y, h(T )) =

⇢
0, Y = h(T )
1, Y 6= h(T ) (5)

where

h(T ) =
n

C, if dist(T, ŝ)  ŝ.distThresh
nonC, otherwise

However, by TS-Shapelet inclusion technique, two Time
Series with similar distance to a Shapelet may obtain different
classes. In addition, a good prediction result of input TS
instance with current Shapelets doesn’t mean that the instance
contains no useful information for adjusting the learning
model. The 0-1 Loss Function analyzes the surface phe-
nomenon of the prediction but ignored the deep information
behind the arbitrary split point technique. A loss measured by
a crisp 0-1 Loss Function is then ill-adapted.

When dist(T, ŝ)  ŝ.distThresh, the prediction result is
relatively acceptable. The problem then becomes how to find a
balance between time efficiency and TS information checking
(i.e., the exhaustive information extraction). The distance
between TS and Shapelets describes the shift between real and
learned concept, a small distance leads to a reliable prediction
result. As the distance measure is usually data-dependant,
and the absolute distance value varies with datasets, then
a normalized measure describing the shift scale is required.
To this end, can we just convert the TS-Shapelet inclusion
problem to the possibility that a TS contains the Shapelet?

As extracted Shapelets try to separate one class to oth-
ers, TSs in different classes tend to be concentrated on the
split point, which causes the main error in prediction. Then
we assume that dist(T, ŝ) satisfies Gaussian distribution, as
shown in Equation 6, the loss can be smoothed by Sigmoid
function by considering distance distribution. The split point
of ŝ defines the expectation � of the distribution.

L(Y, h(T )) =
1

1 + e�(x��)
, � = ŝ.distThresh

x = min(dist(TC , ŝ)), ŝ 2 ŜC
(6)

As shown in Fig. 3, the smaller the loss, the greater the
possibility that T will contain the Shapelet. Intuitively, a loss
threshold � can be set by user for ISMAP to control the
extraction from input instance, and update incrementally the
Shapelet to approach the real concept of data source. When
� is set to 0.5, it has the same effect as 0-1 Loss Function.
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Fig. 3: Loss measure of Time Series by Sigmoid Function and 0-1
Loss Function, Time Series in different classes are distributed around
the split point of Shapelet

However, a stable concept does not hold in several real-life
scenarios. For instance, with the soundness of the knowledge
in a particular domain, the labeling of newly input instances
may evolve gradually, leading to a concept drift. Therefore,
the most recent training instances should contribute more than
the oldest ones to the target prediction. Then the problem
becomes the Concept Drift detection in a Time Series Stream
by monitoring the loss function. Conserving the interpretability
and explainability of the algorithm, ISMAP can be extended
to the context of TS Stream by extracting adaptive features.

C. Adaptive feature extraction from Time Series Stream
As shown in Fig. 4, the system of extracting adaptive

Shapelets from Time Series Stream is composed by Shapelet
Extraction, Evaluation Bloc and Caching Mechanism. We take
TS Chunk Ct,w as minimum input unit which contains a
number of continuous TS instances: Ct,w=(Tt�w+1, Tt�w+2,
..., Tt), where t is the time-tick, w is the window size. By
adopting the Test-then-Train strategy, the main idea here is to
evaluate continuously the shift between learned concept and
real concept in data source (i.e., Test). Once a Concept Drift
is detected, the input chunk will be imported into Shapelet
Extraction bloc to update the learning model (i.e., Train). Both
Shapelet initialization and updating process are parallelizable
on Spark cluster, which makes use of RAM as caching unit
to lower the I/O cost.

3

Shapelet 
Extraction

Shapelet 
Initialization

Shapelet 
Update

BADGOOD

Node

executor

executor

…

CPUs

Node

executor

executor

…

CPUs

…

Current Shapelet Set

TS Stream 
Generator

Evaluation 
Block

Evaluation 
Result?

Chunk CN, w

Next Chunk Import Chunk 

TN, TN-1, …, TN-w , … , Tt, Tt-1 , …

Caching
Mechanism

Fig. 4: System Structure in TS Stream context with Concept Drift

1) Shapelet Extraction: The computing process follows the
same methodology with ISMAP, which allows TS instances
in the input chunk to be partitioned on various Spark nodes,
the discriminative patterns in each partition will be extracted
individually and merged between partitions by their ranking
power. The Shapelet ranking list is then composed by power-
updated existing Shapelets and newly imported candidates.

2) Learned Concept Evaluation: As aforementioned, the
loss of a Shapelet on input instances can describe its shift to
real concept of data source. With the same methodology, when
there is a concept drift in data stream, the analysis tends to
be more complicated. The challenge here is to distinguish the
measured loss from two aspects:
- Incomplete Extraction: As main constraint in Shapelet Ex-
traction, insufficient training instances (i.e., under-fitting) will
bring a relative high loss. More data will make the learning
model approach more the inner concept.

- Concept Drift: The measured shift can only reflect the
distance to a stable concept, a big shift will be observed
using out-of-date learning model.

Shapelet Evaluation
• 0-1 Loss Function (classic methods)

• Sigmoid Loss Function (our proposal)

A Loss Threshold Δ can  be set to import incrementally the valuable instances. 

Evaluation Block (Shapelet Evaluation + Concept Drift Detection)

Figure 2: Shapelet Evaluation over newly input 
TS instances

Loss Threshold 
Δ = 0.3
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Concept Drift detection
• Page-Hinkey (PH) Test1: a typical technique for change detection in signal processing.

• 𝐿; 𝑁 : the average loss of newly input TS chunk

• 𝐿IJK 𝑡 : the average loss of all historical TS chunk until t

• 𝑚,: the cumulative difference between the chunk loss and
average loss until the current time. 𝛿: Loss Tolerance

• 𝑀,: the minimal cumulative difference recorded

• 𝜆: PH threshold to detect a Concept Drift

• 𝐶𝑜𝑛𝑐𝑒𝑝𝑡 𝐷𝑟𝑖𝑓𝑡 = W 𝑇𝑟𝑢𝑒, 𝑃𝐻, ≥ 𝜆
𝐹𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

10 J. Zuo et al.

data source (i.e., Test). Once a Concept Drift is detected, the input chunk will
be imported into Shapelet Extraction bloc to update the learning model (i.e.,
Train). Both Shapelet initialization and updating process are parallelizable on
Spark cluster, which makes use of RAM as caching unit to lower the I/O cost.
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Fig. 4: System Structure in TS Stream context with Concept Drift

1) Shapelet Extraction: The computing process follows the same methodol-
ogy with ISMAP, which allows TS instances in the input chunk to be partitioned
on various Spark nodes, the discriminative patterns in each partition will be ex-
tracted individually and merged between partitions by their ranking power. The
ranking list of Shapelets is then composed by power-updated existing Shapelets
and newly imported candidates.

2) Concept Drift Detection: As aforementioned, the loss of a Shapelet on
input instances can describe its shift to real concept of data source. With the
same methodology, when there is a concept drift in data stream, the analysis
tends to be more complicated. The challenge here is to distinguish the measured
loss from two aspects:

1. Incomplete Extraction: As main constraint in Shapelet Extraction, insuf-
ficient training instances (i.e., under-fitting) will bring a relative high loss.
More data will make the learning model approach more the inner concept.

2. Concept Drift: The measured shift can only reflect the distance to a stable
concept, a big shift will be observed using out-of-date learning model.

In light of these challenges, an advanced analysis on detecting the Concept Drift
from measured loss is required. That is, not only to measure the loss from each
TS Chunk, but also to propose a strategy to analyse the loss. Based on the loss
definition in Equation 6, we define the average loss for a TS chunk CN,w:

LC(N) =
1
w

wX

k=1

L(YN�w+k, h(TN�w+k)) (7)

Concept Enrichment: As mentioned in 3.2, an user-defined loss threshold �
can be set to decide whether to import the chunk into the system to enrich the
concept. That is: ImportChunk = True if LC(N)  �.

Concept Drift detection: Page-Hinkley test (PH) [5] is a typical technique
used for change detection in signal processing. It allows a loss tolerance for the
signal. The sequential test on the variance which considers that normal operation
corresponds to a certain variance and a drift being characterized by an increase
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in this variance. Here we define a cumulative di↵erence between the observed
loss and their mean up until the current time:

mN =
NX

t=0

(LC(t)� Lavg(t)� �) (8)

where Lavg(t) is the average loss until the current time tick t, � specifies
the tolerable magnitude of changes. The minimum mN is defined as MN =
min(mt, t = 1...N). PH test will measure the di↵erence between MN and mN :

PHN = mN �MN (9)

Intuitively, the di↵erence reflects the degree of Concept Drift, when it exceeds
a user-specified threshold �, then the Concept Drift is detected.

3) Caching Mechanism: As the discriminative power of a candidate Shapelet
is based on its global distribution in the dataset, the fact that TS instances should
be cached in memory is then a necessary condition of Shapelet Extraction. This
is the main di↵erence compared to Concept Drift detection in classical data
streams, where it’s possible to have one single pass on input instance. Then
the main challenge here is to consider the nature of Shapelet in Time Series
Stream, and propose a Shapelet-based caching mechanism in streaming context,
meanwhile the caching volume should not increase indefinitely along with the
input the never-ending TS Stream.

As Concept Drift is the fact that the prediction targets at di↵erent time
tick are di↵erent, the previous learned concept is inapplicable to current input
data. Conversely speaking, the fresh extracted concept doesn’t answer previous
prediction target. This fact opens a path to optimize proactively the data caching
procedure in memory. The caching mechanism is shown in Fig. 5. When there
is a state transition of Concept Drift detection, the extraction of a fresh concept
is then finished which is applicable for stream instances coming afterwards. The
detection of this transition will trigger a cache elimination procedure.
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Fig. 5: Caching mechanism of streaming instance chunk in memory

The elimination procedure is based on the assumption that the prediction
target of an old TS Chunk is not compatible with the fresh updated concept. By
evaluating the cached chunks chronologically, we aim at finding the transition
border where historical chunk starts to match the fresh updated concept, which
is a reverse process to the detection of cache elimination trigger. We assume
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Fig. 5: Elastic Caching Mechanism for streaming instance chunk in memory

In light of these challenges, an advanced analysis on detect-
ing the Concept Drift from measured loss is required. That is,
not only to measure the loss from each TS Chunk, but also
to propose a strategy to analyse the loss. Based on the loss
definition in Equation 6, we define the average loss for a TS
chunk CN,w:

LC(N) =
1

w

wX

k=1

L(YN�w+k, h(TN�w+k)) (7)

Concept Enrichment: As mentioned in III-B, an user-defined
loss threshold � can be set to decide whether to import
the chunk into the system to enrich the concept. That is:
ImportChunk = True if LC(N)  �.

Concept Drift detection: Page-Hinkley test (PH) [29] is a
typical technique used for change detection in signal process-
ing. It allows a loss tolerance for the signal. The sequential
test on the variance which considers that normal operation cor-
responds to a certain variance and a drift being characterized
by an increase in this variance. Here we define a cumulative
difference between the observed loss and their mean up until
the current time:

mN =
NX

t=0

(LC(t)� Lavg(t)� �) (8)

where Lavg(t) is the average loss until the current time tick t,
� specifies the tolerable magnitude of changes. The minimum
value of mN is defined as MN = min(mt, t = 1...N). PH
test will measure the difference between MN and mN :

PHN = mN �MN (9)

Intuitively, the difference reflects the degree of Concept Drift,
when it exceeds a user-specified threshold �, then the Concept
Drift is detected.

3) Caching Mechanism: As the discriminative power of a
candidate Shapelet is based on its global distribution in dataset,
the fact that TS instances should be cached in memory is then
a necessary condition of Shapelet Extraction. This is the main
difference compared to Concept Drift detection in classical
data streams, where it’s possible to have one single pass on
input instance. Then the main challenge here is to bridge the

gap between TS and data stream analysis, that is, to consider
the nature of Shapelet in Time Series Stream (i.e., part of
data instances need to be cached), and propose a Shapelet-
based caching mechanism in streaming context, meanwhile the
caching volume should not increase indefinitely along with the
never-ending TS Stream.

As Concept Drift is the fact that the prediction targets at
different time tick are different, the previous learned concept
is inapplicable to current input data. Conversely speaking,
the fresh extracted concept doesn’t match previous prediction
target. This fact opens a path to optimize proactively the data
caching procedure in memory. Considered as a complement
to the global system shown in Fig. 4, the caching mechanism
is detailed in Fig. 5. Once a Concept Drift is detected in
TS stream, the TS chunk will be cached into memory. As
mentioned in ISMAP, newly input chunk will generate its
Matrix Profile set, and update those of previously cached
chunks, which eventually leads to the update of Shapelet list in
the learned concept. When there is a state transition in Concept
Drift detection, the extraction of a fresh concept is then
finished which is applicable for streaming instances coming
afterwards. The detection of this transition state triggers then
a cache elimination procedure.

The elimination procedure is based on the fact that the
prediction target of an old TS Chunk is not compatible with
the fresh learned concept. By evaluating the cached chunks
chronologically, we aim at finding the transition border where
historical chunk starts to match the fresh updated concept,
which is a reverse process to the detection of cache elimination
trigger. We assume that Ct,w is the oldest chunk cached in
memory, after a trigger is detected, the evaluation will be
conducted from Ct,w to more recent chunks using the fresh
learned concept. If the prediction target in Ct,w matches the
fresh concept, that means Ct,w is in the frame of the fresh
concept, the chunks in later time ticks also contributes to the
concept’s tuning, which can be kept in memory. Otherwise,
Ct,w should be removed from cache to eliminate the negative
effect to the fresh learned concept. The process will not stop
until a transition border is detected. By this proactive mech-
anism, the system is capable of caching a stable volume of
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In light of these challenges, an advanced analysis on detect-
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where Lavg(t) is the average loss until the current time tick t,
� specifies the tolerable magnitude of changes. The minimum
value of mN is defined as MN = min(mt, t = 1...N). PH
test will measure the difference between MN and mN :
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Intuitively, the difference reflects the degree of Concept Drift,
when it exceeds a user-specified threshold �, then the Concept
Drift is detected.

3) Caching Mechanism: As the discriminative power of a
candidate Shapelet is based on its global distribution in dataset,
the fact that TS instances should be cached in memory is then
a necessary condition of Shapelet Extraction. This is the main
difference compared to Concept Drift detection in classical
data streams, where it’s possible to have one single pass on
input instance. Then the main challenge here is to bridge the

gap between TS and data stream analysis, that is, to consider
the nature of Shapelet in Time Series Stream (i.e., part of
data instances need to be cached), and propose a Shapelet-
based caching mechanism in streaming context, meanwhile the
caching volume should not increase indefinitely along with the
never-ending TS Stream.

As Concept Drift is the fact that the prediction targets at
different time tick are different, the previous learned concept
is inapplicable to current input data. Conversely speaking,
the fresh extracted concept doesn’t match previous prediction
target. This fact opens a path to optimize proactively the data
caching procedure in memory. Considered as a complement
to the global system shown in Fig. 4, the caching mechanism
is detailed in Fig. 5. Once a Concept Drift is detected in
TS stream, the TS chunk will be cached into memory. As
mentioned in ISMAP, newly input chunk will generate its
Matrix Profile set, and update those of previously cached
chunks, which eventually leads to the update of Shapelet list in
the learned concept. When there is a state transition in Concept
Drift detection, the extraction of a fresh concept is then
finished which is applicable for streaming instances coming
afterwards. The detection of this transition state triggers then
a cache elimination procedure.

The elimination procedure is based on the fact that the
prediction target of an old TS Chunk is not compatible with
the fresh learned concept. By evaluating the cached chunks
chronologically, we aim at finding the transition border where
historical chunk starts to match the fresh updated concept,
which is a reverse process to the detection of cache elimination
trigger. We assume that Ct,w is the oldest chunk cached in
memory, after a trigger is detected, the evaluation will be
conducted from Ct,w to more recent chunks using the fresh
learned concept. If the prediction target in Ct,w matches the
fresh concept, that means Ct,w is in the frame of the fresh
concept, the chunks in later time ticks also contributes to the
concept’s tuning, which can be kept in memory. Otherwise,
Ct,w should be removed from cache to eliminate the negative
effect to the fresh learned concept. The process will not stop
until a transition border is detected. By this proactive mech-
anism, the system is capable of caching a stable volume of
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1. J. Gama, I. Zliobait E, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A Survey on Concept Drift Adaptation,”. ACM Comput. Surv. Article, vol. 1, 2013. 
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4. Experiments

1. UCR Archive: https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
2. A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great time series classification bake off: a review and experimental evaluation of recent algorithmic

advances,” Data Mining and Knowledge Discovery, vol. 31, no. 3, pp. 606–660, 2017
3. Lexiang Ye and Eamonn Keogh, “Time series shapelets: A New Primitive for Data Mining” In Proc. SIGKDD 2009
4. Jason Lines, and Anthony Bagnall, “Alternative Quality Measures for Time Series Shapelets”, IDEAL 2012

Experimental Designs:

• Accuracy & Incrementality of ISMAP
Datasets: 

• 14 datasets from UCR Archive1, 2

Baseline: Shapelet Tree classifiers
• Information Gain (IG)3

• Kruskall-Wallis (KW)4

• Mood’s Median (MM)4

Evaluation:
• Incrementality: captured by Compression Ratio 
• Accuracy & Time
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Table 1: Shapelet Datasets in UCR Archive used for Incremental Test (ISMAP)
Type Name Train/Test Class Length IG KW MM ISMAP(best) Para. (�) Comp. Ratio

Simulated SyntheticControl 300/300 6 60 0.9433 0.9000 0.8133 0.7007 0.35 46.7%

Sensor

Trace 100/100 4 275 0.9800 0.9400 0.9200 1 0.5, 0.45 26.0%
MoteStrain 20/1252 2 84 0.8251 0.8395 0.8395 0.9169 0.45 60.0%
SonyAIBO.I 20/601 2 70 0.8453 0.7281 0.7521 0.9151 0.4 95.0%
SonyAIBO.II 27/953 2 65 0.8457 - - 0.8583 0.4 63.0%
ItalyPower. 67/1029 2 24 0.8921 0.9096 0.8678 0.9466 0.45 25.4%

ECG
ECG5000 500/4500 5 140 0.7852 - - 0.9109 0.4 9.4%
ECGFiveDays 23/861 2 136 0.7747 0.8721 0.8432 0.9826 0.4 51.2%
TwoLeadECG 23/1189 2 82 0.8507 0.7538 7657 0.9337 0.5 47.8%

Images
Symbols 25/995 6 398 0.7799 0.5568 0.5799 0.8113 0.35 96.0%
Co↵ee 28/28 2 286 0.9643 0.8571 0.8671 0.9286 0.4 78.6%
FaceFour 24/88 4 350 0.8409 0.4432 0.4205 0.9886 except 0.45 62.5%
DiatomSize. 16/306 4 345 0.7222 0.6111 0.4608 0.8758 0.5 50.0%

Motion GunPoint 50/150 2 150 0.8933 0.9400 0.9000 0.9733 0.45 42.0%

Accuracy

Time

Fig. 6: Results of Incremental Test (ISMAP) by adopting Shapelet Evaluation

and predict target instance: a) Information Gain (IG)[29], b) Kruskall-Wallis
(KW) [18], c) Mood’s Median (MM) [18]. As quality measure’s calculation is
negligible compared to the total time cost, the computation time should remain
at the same level when they adopt the same distance measure (e.g., MASS ), and
when ISMAP doesn’t adopt a Test-then-Train strategy.

Table 1 shows the accuracy performance comparison between baselines and
our approach. Obviously, ISMAP achieved the top performance on accuracy met-
ric on more datasets than any other classifier (12 of 14). Specifically for sensor,
motion and ECG data, ISMAP performs no doubt better than other approaches,
and achieved more than 20% accuracy improvement in ECG5000. Table 1 shows
as well the parameter � which brings the best accuracy performance. The Com-
pression Ratio is defined by the proportion of imported valuable instances over
total training instances: Comp.Ratio = nbr.instanceimported

nbr.instancetraining
, the ratio below 1

brings a better performance in both time and memory cost.

Fig. 6 shows a global view of accuracy and time cost tested by ISMAP

under di↵erent loss thresholds. Most of the time the accuracy keeps on a relative
stable stage even with the increase of �, which can be explained by the fact that
the instances from the same class are highly consistent, and share the common
Shapelet features. Therefore, the system e�ciency can be largely improved with
an exchange of a negligible decrease of accuracy.
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4. Experiments
Experimental Designs:

• Concept Drift Detection & Adaptive Features
Datasets:
• Synthetic Trace1 dataset:

• Randomly put noise for Data Augmentation
• 1000/1000 training/testing instances
• Two drifts are inserted at time 333 and 667

• Synthetic ECG50001 dataset:
• 500/500 training/testing instances
• Two drifts are inserted at time 167 and 233

Evaluation:
• Drift detection
• Elastic caching mechanism
• Reliability of Adapted features

1. UCR Archive: https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
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Fig. 6: Results of Incremental Test (ISMAP) by adopting Shapelet Evaluation

and predict target instance: a) Information Gain (IG)[29], b) Kruskall-Wallis
(KW) [18], c) Mood’s Median (MM) [18]. As quality measure’s calculation is
negligible compared to the total time cost, the computation time should remain
at the same level when they adopt the same distance measure (e.g., MASS ), and
when ISMAP doesn’t adopt a Test-then-Train strategy.

Table 1 shows the accuracy performance comparison between baselines and
our approach. Obviously, ISMAP achieved the top performance on accuracy met-
ric on more datasets than any other classifier (12 of 14). Specifically for sensor,
motion and ECG data, ISMAP performs no doubt better than other approaches,
and achieved more than 20% accuracy improvement in ECG5000. Table 1 shows
as well the parameter � which brings the best accuracy performance. The Com-
pression Ratio is defined by the proportion of imported valuable instances over
total training instances: Comp.Ratio = nbr.instanceimported

nbr.instancetraining
, the ratio below 1

brings a better performance in both time and memory cost.

Fig. 6 shows a global view of accuracy and time cost tested by ISMAP

under di↵erent loss thresholds. Most of the time the accuracy keeps on a relative
stable stage even with the increase of �, which can be explained by the fact that
the instances from the same class are highly consistent, and share the common
Shapelet features. Therefore, the system e�ciency can be largely improved with
an exchange of a negligible decrease of accuracy.

4.1 Accuracy & Incrementality of ISMAP

1. UCR Archive: https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
2. Lexiang Ye and Eamonn Keogh, “Time series shapelets: A New Primitive for Data Mining” In Proc. SIGKDD 2009
3. Jason Lines, and Anthony Bagnall, “Alternative Quality Measures for Time Series Shapelets”, IDEAL 2012

Baseline: Shapelet Tree classifiers
• Information Gain (IG)2

• Kruskall-Wallis (KW)3

• Mood’s Median (MM)3
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4.1 Accuracy & Incrementality of ISMAP

1. UCR Archive: https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
2. Lexiang Ye and Eamonn Keogh, “Time series shapelets: A New Primitive for Data Mining” In Proc. SIGKDD 2009
3. Jason Lines, and Anthony Bagnall, “Alternative Quality Measures for Time Series Shapelets”, IDEAL 2012
4. J. Lines, L. M. Davis, J. Hills, and A. Bagnall, “A shapelet transform for time series classification,” in Proc. SIGKDD 2012
5. J. Lines, S. Taylor, and A. Bagnall, “Hive-cote: The hierarchical vote collective of transformation-based ensembles for time series classification,” IEEE ICDM 2016

Baseline: Shapelet Tree classifiers
• Information Gain (IG)2

• Kruskall-Wallis (KW)3

• Mood’s Median (MM)3
ISMAP can be concatenated with Shapelet Transform4 methods for higher accuracy
ISMAP can be integrated into TS ensemble classifiers, e.g., HIVE-COTE5
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and predict target instance: a) Information Gain (IG)[29], b) Kruskall-Wallis
(KW) [18], c) Mood’s Median (MM) [18]. As quality measure’s calculation is
negligible compared to the total time cost, the computation time should remain
at the same level when they adopt the same distance measure (e.g., MASS ), and
when ISMAP doesn’t adopt a Test-then-Train strategy.

Table 1 shows the accuracy performance comparison between baselines and
our approach. Obviously, ISMAP achieved the top performance on accuracy met-
ric on more datasets than any other classifier (12 of 14). Specifically for sensor,
motion and ECG data, ISMAP performs no doubt better than other approaches,
and achieved more than 20% accuracy improvement in ECG5000. Table 1 shows
as well the parameter � which brings the best accuracy performance. The Com-
pression Ratio is defined by the proportion of imported valuable instances over
total training instances: Comp.Ratio = nbr.instanceimported

nbr.instancetraining
, the ratio below 1

brings a better performance in both time and memory cost.

Fig. 6 shows a global view of accuracy and time cost tested by ISMAP

under di↵erent loss thresholds. Most of the time the accuracy keeps on a relative
stable stage even with the increase of �, which can be explained by the fact that
the instances from the same class are highly consistent, and share the common
Shapelet features. Therefore, the system e�ciency can be largely improved with
an exchange of a negligible decrease of accuracy.
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• Trade-off between Accuracy and Loss Threshold Δ

In theory
• Loss threshold ↗, the efficiency ↗,

the accuracy ↘
In practice
• The highest accuracy falls in the

range Δ ∈ [0.35,0.45].

4.1 Accuracy & Incrementality of ISMAP
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In theory
• Loss threshold ↗, the efficiency ↗,

the accuracy ↘
In practice
• The highest accuracy falls in the

range Δ ∈ [0.35,0.45].
• Small uncertainty for the number

of instances to be imported into the
system

4.1 Accuracy & Incrementality of ISMAP
• Trade-off between Accuracy and Loss Threshold Δ
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4.2 Concept Drift Detection & Adaptive Features
Drift 1 inserted 167 Drift 2 inserted 333

Drift 1 detected 170 Drift 2 detected 340

Adapted Concept 1 195 Adapted Concept 2 390

Adaptation period: 25, 
Accuracy: 0.9018

Adaptation period: 50
Accuracy: 0.8927

Drift 1 inserted 333 Drift 2 inserted 667

Drift 1 detected 345 Drift 2 detected 670

Adapted Concept 1 380 Adapted Concept 2 790

Adaptation period: 35
Accuracy: 0.99

Adaptation period: 120
Accuracy: 0.98

Drift 1 inserted 333 Drift 2 inserted 667

Drift 1 detected 350 Drift 2 detected 675

Adapted Concept 1 365 Adapted Concept 2 700

Adaptation period: 15
Accuracy: 0.98

Adaptation period: 25
Accuracy: 0.97

ECG5000

Synthetic Trace
𝛿=0.15

Synthetic Trace
𝛿=0.30
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4.2 Concept Drift Detection & Adaptive Features1

𝛿=0.15
• 0 -> 70 -> 40 

• 40 -> 170 -> 120 

• 120 of 1000 instances cached

ECG5000

Synthetic Trace
𝛿=0.15

Synthetic Trace
𝛿=0.30

Number of instances:
• 0 -> 65 -> 45 
• 45 -> 115 -> 65 
• 65 of 500 instances cached

𝛿=0.30
• 0 -> 65 -> 30

• 30 -> 65 -> 50 

• 50 of 1000 instances cached

1. J. Zuo, K. Zeitouni, and Y. Taher, “ISETS: Incremental Shapelet Extraction from Time Series Stream”, demo paper in ECML-PKDD’19
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5. Conclusion
ü First attempt to explore incremental and adaptive features in Time Series Stream.

ü We propose a novel Shapelet Evaluation approach which allows the transition from Time
Series to Data Stream Mining.

ü We propose an elastic caching mechanism which is capable of eliminating out-of-date
concepts & data proactively in the Time Series Stream model.

ü The system is applicable in the scenario where:

• New TS instances enrich the learned concept
• New TS instances bring Concept Drift

Ø Future work:

• Extend to Streaming TS context
• Focus on weak-labelled data

Project Page in GithubProject page in Github 
(Demo video1 included) 

1. J. Zuo, K. Zeitouni, and Y. Taher, “ISETS: Incremental Shapelet Extraction from Time Series Stream”, demo paper in ECML-PKDD’19
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Questions?
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