Incremental and Adaptive Feature Exploration over Time Series Stream

Jingwei ZUO, Karine ZEITOUNI, Yehia TAHER

IEEE Big Data 2019 - December 2019

0

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Marie Sklodowska- Curie grant agreement No 777695 Disclaimer: This work reflects only the author's view and that the EU Agency is not responsible for any use that may be made of the information it contains.

1. Context & Background

Knowledge Discovery in Time Series (TS)

- Motif Matching
- (Frequent) Pattern Discovery
- Anomaly Detection
- Time Series Classification/Clustering, etc.

Knowledge Discovery in Data Streams (DS) & Challenges¹

- Infinite Length
- Feature Evolution
- Concept Drift
- Concept Evolution

- I Memory Cost
- Incrementality of learning model
- Adaptive adjustment of learning model
- Free Emergence of new classes

1. Context & New Mining directions

Time Series + Data Stream = ?

A combination which covers more practical scenarios !

1. Context & Definitions

Time Series Stream S_{TS}

• A continuous input data stream where each instance is a Time Series: $S_{TS} = (T_1, T_2, ..., T_N)$, notice that N increases with each new time-tick.

Use Cases:

- Medical domain Patient TS database is getting bigger and bigger
- Astronomy discovery New detection of the star light curves, update the features inside the Learning Model

Health Care

1. Context & Definitions

Time Series Stream S_{TS}

Streaming Time Series S

• A continuous input data stream where each instance is a Time Series: $S_{TS} = (T_1, T_2, ..., T_N)$, notice that N increases with each new time-tick.

Use Cases:

• Medical domain Patient TS database is getting bigger and bigger

t₀ t₁ ...

• Astronomy discovery New detection of the star light curves, update the features inside the Learning Model

A continuous input data stream where each instance is a real-valued data: $S = (t_1, t_2, ..., t_N)$

Smart City Sensor

1. Objectives of Time Series Stream Mining

Time Series Mining

- Real valued data with high temporal dependence
- Feature Representation is the essential part in the mining process

Classic Data Stream Mining

• Row or vector data with multiple attributes without assumption of temporal dependence

Interpretable, Incremental, Adaptive features in streaming context

1. Filling the Gap between TS & DS Mining

Tim	e Series Feature Representations	Data	a Stream Challenges ²
R1	Global features of entire series (1-NN)	 C 1	Infinite Length
R2	Summary statistics of intervals/sub-series	C2	Feature Evolution
R3	Motif (frequent patterns)	C 3	Concept Drift
R4	Shapelet ¹ (shape-based features)	C4	Concept Evolution

$R4 + \{C1, C2, C3\}$

- 1. L. Ye and E. Keogh. "Time series shapelets: A New Primitive for Data Mining." In Proc. SIGKDD 2009
- 2. M. M. Masud, Q. Chen, J. Gao, L. Khan, J. Han, and B. Thuraisingham, "Classification and Novel Class Detection of Data Streams in a Dynamic Feature Space", ECML-PKDD'10

Why Shapelet¹?

Definition

• A representative shape in Time Series which is capable of distinguishing one class from the others

Figure 1²: Two classes from the "ECGFiveDays" dataset and the *best representative patterns (Shapelets)*

- 1. L. Ye and E. Keogh. "Time series shapelets: A New Primitive for Data Mining." In Proc. SIGKDD 2009
- 2. X. Wang et al. "RPM: Representative Pattern Mining for Efficient Time Series Classification.", In Proc. EDBT'16

Feature Evolution over Shapelets

Dataset *Trace*¹ (class 2)

Time stamp = 20

Shapelet (Feature) Ranking

Time stamp = 100

Concept Drift over Shapelets

Dataset *Trace*¹ (class 2)

Time stamp = 100

Time stamp = 200

1. Problems to tackle

- Low Scalability and Incrementality of Shapelet approaches
- Classic Shapelet Evaluation is not suitable in streaming context
- **Concept Drift detection** in TS Stream model
- Memory cost of infinite TS instances

2. Preliminaries

Distance Profile & Matrix Profile¹

Figure 2.1: Distance Profile between Query $T_{i,m}$ and target time series T', where n' is the length of T'. $DP_{i,j}$ can be considered as a meta TS annotating target T'

Find the Nearest Neighbor of the Query

Figure 2.2: *Matrix Profile* between Source T and Target T', where n is the length of T. Intuitively, MP_i shares the same offset as source T

Find the closest pairs between two TS

1. Chin-Chia Michael Yeh et al. "Matrix Pro le I: All Pairs Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets." In Proc. ICDM 2016

2. Preliminaries - Our previous work

SMAP¹ (Shapelet Extraction on Matrix Profile)

2. Preliminaries - Our previous work

SMAP¹ (Shapelet Extraction on Matrix Profile)

Cache Dataset in HDFS.

• MapPartition (*Set of <ID*, *T*>)

T. $dist_{Thresh} \leftarrow RepresentativeProfile(T, D^C)$

T. $DiscmP \leftarrow ComputeDiscriminativeProfile(T, D)$ emit (ID, T)

2. Preliminaries - Our previous work

SMAP¹ (Shapelet Extraction on Matrix Profile)

Cache Dataset in HDFS.

• MapPartition (*Set of <ID*, *T*>)

T. $dist_{Thresh} \leftarrow RepresentativeProfile(T, D^C)$

T. $DiscmP \leftarrow ComputeDiscriminativeProfile(T, D)$ emit (ID, T)

```
MapAggregation (class, (ID, T))

\hat{S} \leftarrow getTopK(aggregation(T. DiscmP))

return \hat{S}
```

3. Our proposal

Test-then-Train strategy

3. Our proposals - Incremental SMAP (ISMAP)

Cache TS Chunk / T_N in HDFS

1. MapPartition (Set of (ID, T)) T. dist_{Thresh} \leftarrow UpdateRepresentativeProfile(T, T_N) T. DiscmP \leftarrow UpdateDiscriminativeProfile(T, T_N) MP $_{T_N} \leftarrow$ computeMP(T_N, T) emit (ID, T, MP $_{T_N}$)

Update the discriminative power of existing Shapelets

3. Our proposals - Incremental SMAP (ISMAP)

Cache TS Chunk / T_N in HDFS

1. MapPartition (*Set of (ID, T)*)

 $T. dist_{Thresh} \leftarrow UpdateRepresentativeProfile(T, T_N)$ $T. DiscmP \leftarrow UpdateDiscriminativeProfile(T, T_N)$ $MP_{T_N} \leftarrow computeMP(T_N, T)$ emit (ID, T, MP_{T_N})
2. MapAggregation (*, (ID, T, MP_{T_N})) $T_N. dist_{Thresh} \leftarrow RepresentativeProfile(agg(MP_{T_N}))$ $T_N. DiscmP \leftarrow DiscriminativeProfile(agg(MP_{T_N}))$ return(ID, T_N)

Introduce new candidate Shapelets, compute their discriminative power

3. Our proposals - Incremental SMAP (ISMAP)

Cache TS Chunk / $T_{\rm N}$ in HDFS

- MapPartition (Set of (ID, T))
 T. dist_{Thresh} ← UpdateRepresentativeProfile(T, T_N)
 T. DiscmP ← UpdateDiscriminativeProfile(T, T_N)
 MP T_N ← computeMP(T_N, T)
 emit (ID, T, MP T_N)
 MapAggregation (*, (ID, T, MP T_N))
 T_N. dist_{Thresh} ← RepresentativeProfile(agg(MP T_N))
 T_N. DiscmP ← DiscriminativeProfile(agg(MP T_N))
 return(ID, T_N)
- 3. MapAggregation (*class*, (*ID*, *T*)) $\hat{S} \leftarrow getTopK(aggregation(T. DiscmP))$ return \hat{S}

Update the Shapelet Set

3. Our proposals - Evaluation Block

Evaluation from two aspects

1. Shapelet Evaluation

---> Only when loss > threshold, import TS into extraction process

---> Select the most informative TS chunks

Memory & Computation Saving

2. Concept Drift Detection

---> Distinguish from Shapelet loss

Evaluation Block (Shapelet Evaluation + Concept Drift Detection)

Shapelet Evaluation

• 0-1 Loss Function (classic methods)

$$L(Y, h(T)) = \begin{cases} 0, & Y = h(T) \\ 1, & Y \neq h(T) \end{cases}$$

where

$$h(T) = \begin{cases} C, & \text{if } dist(T, \hat{s}) \leq \hat{s}. dist_{Thresh} \\ nonC, & \text{otherwise} \end{cases}$$

• Sigmoid Loss Function (our proposal)

$$L(Y, h(T)) = \frac{1}{1 + e^{-(x - \epsilon)}}$$
$$x = min(dist(T^{C}))$$

Figure 2: Shapelet Evaluation over newly input TS instances

Evaluation Block (Shapelet Evaluation + Concept Drift Detection)

Shapelet Evaluation

٠

• 0-1 Loss Function (classic methods)

A Loss Threshold Δ can be set to import incrementally the valuable instances.

Evaluation Block (Shapelet Evaluation + Concept Drift Detection)

Concept Drift detection

• Page-Hinkey (PH) Test¹: a typical technique for change detection in signal processing.

$$L_{C}(N) = \frac{1}{w} \sum_{k=1}^{w} L(Y_{N-w+k}, h(T_{N-w+k}))$$

$$m_{N} = \sum_{t=0}^{N} (L_{C}(t) - L_{avg}(t) - \delta)$$

$$M_{N} = min(m_{t}, t = 1...N)$$

$$PH_{N} = m_{N} - M_{N}$$

- $L_C(N)$: the average loss of newly input TS chunk
- $L_{avg}(t)$: the average loss of all historical TS chunk until t
- m_N : the cumulative difference between the chunk loss and average loss until the current time. δ : <u>Loss Tolerance</u>
- M_N : the minimal cumulative difference recorded

• λ : <u>*PH threshold*</u> to detect a Concept Drift

• Concept Drift =
$$\begin{cases} True, PH_N \ge \lambda \\ False, otherwise \end{cases}$$
 Loss -> Signal Change point detection

3. Our proposals - Elastic Caching Mechanism

Dependence on cached data

Shapelet Extraction relies on a set of TS instance

- Current Learned concept
- Out-of-date concept

3. Our proposals - Elastic Caching Mechanism

Intuition: Fresh learned concept might be inapplicable for the old instances in the cache \rightarrow Delete them from the cache

4. Experiments

Experimental Designs:

• Accuracy & Incrementality of ISMAP

Datasets:

• 14 datasets from UCR Archive^{1,2}

Baseline: Shapelet Tree classifiers

- Information Gain (IG)³
- Kruskall-Wallis (KW)⁴
- Mood's Median (MM)⁴

Evaluation:

• Incrementality: captured by **Compression Ratio**

 $Comp.Ratio = \frac{nbr.instance_{imported}}{nbr.instance_{training}}$

• Accuracy & Time

- 3. Lexiang Ye and Eamonn Keogh, "Time series shapelets: A New Primitive for Data Mining" In Proc. SIGKDD 2009
- 4. Jason Lines, and Anthony Bagnall, "Alternative Quality Measures for Time Series Shapelets", IDEAL 2012

^{1.} UCR Archive: https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

^{2.} A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, "The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances," Data Mining and Knowledge Discovery, vol. 31, no. 3, pp. 606–660, 2017

4. Experiments

Experimental Designs:

• Concept Drift Detection & Adaptive Features

Datasets:

- Synthetic *Trace*¹ dataset:
 - Randomly put noise for Data Augmentation
 - 1000/1000 training/testing instances
 - Two drifts are inserted at time *333* and *667*
- Synthetic *ECG5000¹* dataset:
 - 500/500 training/testing instances
 - Two drifts are inserted at time *167* and *233*

Evaluation:

- Drift detection
- Elastic caching mechanism
- Reliability of Adapted features
- 1. UCR Archive: https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

Baseline: Shapelet Tree classifiers

- Information Gain (IG)²
- Kruskall-Wallis (KW)³
- Mood's Median (MM)³

Type	Name	Train/Test	Class	Length	IG	$\mathbf{K}\mathbf{W}$	$\mathbf{M}\mathbf{M}$	$\operatorname{ISMAP}(\operatorname{best})$	Para. (Δ)	Comp. Ratio
Simulated SyntheticControl		300/300	6	60	0.9433	0.9000	0.8133	0.7007	0.35	46.7%
	Trace	100/100	4	275	0.9800	0.9400	0.9200	1	0.5, 0.45	26.0%
	MoteStrain	20/1252	2	84	0.8251	0.8395	0.8395	0.9169	0.45	60.0%
Sensor	SonyAIBO.I	20/601	2	70	0.8453	0.7281	0.7521	0.9151	0.4	95.0%
	SonyAIBO.II	27/953	2	65	0.8457	-	-	0.8583	0.4	63.0%
	ItalyPower.	67/1029	2	24	0.8921	0.9096	0.8678	0.9466	0.45	25.4%
	ECG5000	500/4500	5	140	0.7852	-	-	0.9109	0.4	9.4%
ECG	ECGFiveDays	23/861	2	136	0.7747	0.8721	0.8432	0.9826	0.4	51.2%
	TwoLeadECG	23/1189	2	82	0.8507	0.7538	7657	0.9337	0.5	47.8%
	Symbols	25/995	6	398	0.7799	0.5568	0.5799	0.8113	0.35	96.0%
Images	Coffee	28/28	2	286	0.9643	0.8571	0.8671	0.9286	0.4	78.6%
	FaceFour	24/88	4	350	0.8409	0.4432	0.4205	0.9886	except 0.45	62.5%
	DiatomSize.	16/306	4	345	0.7222	0.6111	0.4608	0.8758	0.5	50.0%
Motion	GunPoint	50/150	2	150	0.8933	0.9400	0.9000	0.9733	0.45	42.0%

1. UCR Archive: https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

2. Lexiang Ye and Eamonn Keogh, "Time series shapelets: A New Primitive for Data Mining" In Proc. SIGKDD 2009

3. Jason Lines, and Anthony Bagnall, "Alternative Quality Measures for Time Series Shapelets", IDEAL 2012

Baseline: Shapelet Tree classifiers

- Information Gain (IG)²
- Kruskall-Wallis (KW)³
- Mood's Median (MM)³

ISMAP can be concatenated with Shapelet Transform⁴ methods for higher accuracy ISMAP can be integrated into TS ensemble classifiers, e.g., HIVE-COTE⁵

Type	Name	Train/Test	Class	Length	IG	$\mathbf{K}\mathbf{W}$	$\mathbf{M}\mathbf{M}$	ISMAP(best)	Para. (Δ)	Comp. Ratio
Simulated SyntheticControl		300/300	6	60	0.9433	0.9000	0.8133	0.7007	0.35	46.7%
	Trace	100/100	4	275	0.9800	0.9400	0.9200	1	0.5, 0.45	26.0%
	MoteStrain	20/1252	2	84	0.8251	0.8395	0.8395	0.9169	0.45	60.0%
Sensor	SonyAIBO.I	20/601	2	70	0.8453	0.7281	0.7521	0.9151	0.4	95.0%
	SonyAIBO.II	27/953	2	65	0.8457	-	-	0.8583	0.4	63.0%
	ItalyPower.	67/1029	2	24	0.8921	0.9096	0.8678	0.9466	0.45	25.4%
	ECG5000	500/4500	5	140	0.7852	-	-	0.9109	0.4	9.4%
ECG	ECGFiveDays	23/861	2	136	0.7747	0.8721	0.8432	0.9826	0.4	51.2%
	TwoLeadECG	23/1189	2	82	0.8507	0.7538	7657	0.9337	0.5	47.8%
	Symbols	25/995	6	398	0.7799	0.5568	0.5799	0.8113	0.35	96.0%
Images	Coffee	28/28	2	286	0.9643	0.8571	0.8671	0.9286	0.4	78.6%
	FaceFour	24/88	4	350	0.8409	0.4432	0.4205	0.9886	except 0.45	62.5%
	DiatomSize.	16/306	4	345	0.7222	0.6111	0.4608	0.8758	0.5	50.0%
Motion	GunPoint	50/150	2	150	0.8933	0.9400	0.9000	0.9733	0.45	42.0%

1. UCR Archive: https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

- 2. Lexiang Ye and Eamonn Keogh, "Time series shapelets: A New Primitive for Data Mining" In Proc. SIGKDD 2009
- 3. Jason Lines, and Anthony Bagnall, "Alternative Quality Measures for Time Series Shapelets", IDEAL 2012
- 4. J. Lines, L. M. Davis, J. Hills, and A. Bagnall, "A shapelet transform for time series classification," in Proc. SIGKDD 2012
- 5. J. Lines, S. Taylor, and A. Bagnall, "Hive-cote: The hierarchical vote collective of transformation-based ensembles for time series classification," IEEE ICDM 2016

• Trade-off between Accuracy and Loss Threshold Δ

In theory

 Loss threshold ↗, the efficiency ↗, the accuracy ↘

In practice

• The highest accuracy falls in the range $\Delta \in [0.35, 0.45]$.

Trade-off between Accuracy and Loss Threshold Δ ٠

In theory

Loss threshold \nearrow , the efficiency \nearrow , the accuracy \mathbf{Y}

In practice

- The highest accuracy falls in the range $\Delta \in [0.35, 0.45]$.
- Small uncertainty for the number of instances to be imported into the system

4.2 Concept Drift Detection & Adaptive Features

c) Aug. Trace: Tolerance $\delta = 0.30$, PH thresh. $\lambda = 0.4$

4.2 Concept Drift Detection & Adaptive Features¹

Number of instances:

- 0 -> 65 -> 45
- 45 -> **115 -> 65**
- 65 of 500 instances cached

δ=0.15

- 0 -> **70 -> 40**
- 40 -> **170 -> 120**
- 120 of 1000 instances cached

 $\delta = 0.30$

- 0 -> 65 -> 30
- 30 -> **65 -> 50**
- 50 of 1000 instances cached

5. Conclusion

- ✓ First attempt to explore incremental and adaptive features in Time Series Stream.
- ✓ We propose a novel Shapelet Evaluation approach which allows the transition from Time Series to Data Stream Mining.
- ✓ We propose an elastic caching mechanism which is capable of eliminating out-of-date concepts & data proactively in the Time Series Stream model.
- \checkmark The system is applicable in the scenario where:
 - New TS instances enrich the learned concept
 - New TS instances bring Concept Drift
- **Future work:**
 - Extend to Streaming TS context
 - Focus on weak-labelled data

Project page in Github (Demo video¹ included)

1. J. Zuo, K. Zeitouni, and Y. Taher, "ISETS: Incremental Shapelet Extraction from Time Series Stream", demo paper in ECML-PKDD'19

Questions?