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Abstract—Over past years, various attempts have been made at
analysing Time Series (TS) which has been raising great interest
of Data Mining community due to its special data format and
broad application scenarios. An important aspect in TS analysis
is Time Series Classification (TSC), which has been applied
in medical diagnosis, human activity recognition, industrial
troubleshooting, etc. Typically, all TSC work trains a stable
model from an off-line TS dataset, without considering potential
Concept Drift in streaming context. Domains like healthcare look
to enrich the database gradually with more medical cases, or in
astronomy, with human’s growing knowledge about the universe,
the theoretical basis for labelling data will change. The techniques
applied in a stable TS dataset are then not adaptable in such
dynamic scenarios (i.e. streaming context). Classical data stream
analysis are biased towards vector or row data, where each
attribute is independent to train an adaptive learning model, but
rarely considers Time Series as a stream instance. Processing such
type of data requires combining techniques in both communities
of Time Series (TS) and Data Streams. To this end, by adopting
the concepts of Shapelet and Matrix Profile, we conduct the first
attempt to extract the adaptive features from Time Series Stream
based on the Test-then-Train strategy, which is applicable in both
contexts: a) under stable concept, learning model will be updated
incrementally; b) for data source with Concept Drift, previous
concepts that do not represent the current stream behavior will
be discarded from the model.

Index Terms—Time Series, Data Stream, Time Series Stream,
Concept Drift, Spark, Distributed Computing

I. INTRODUCTION

Time Series (TS) is a sequence of real-valued data, which

can be collected from various sources, such as ECG data in

medicine, IoT data in smart cities, light-curves in astronomy,

GPS or accelerometer data in activity recognition, etc. Time

Series Classification (TSC) is intended to predict the label

of a newly input TS instance by extracting the knowledge

from collected data. Various TSC approaches have been

proposed by researchers in recent years which are suitable

for different contexts along with dissimilar TS features. One

Nearest Neighbor (1-NN) classifier for whole series similarity

measure is a typical baseline of TSC research, which is usually

combined with various distance measures [1]–[4]. Instread

of considering the global feature of entire series, summary

statistic features (e.g., mean, deviation, slope, etc.) can be

extracted from every sub-series to build diverse ensemble
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classifiers [5]–[7]. With the emergence of TS dimensional-

ity reduction techniques (e.g., PAA [8], SAX [9], etc.), TS

instances can be represented by high-dimensional vectors so

that various techniques [10] from classic data analysis can

be adapted into TS context. For instance, in case that motifs

or frequent patterns are what characterize a given class, the

dictionary based approaches [11]–[13] borrowed from Text

Mining and Information Retrieval community can be adopted.

As for the scenario that the occurrence of specific sub-series

determines a class, TS can then be represented by such shape-

based features, namely Shapelet [14]. Various Shapelet-based

approaches have been proposed to optimize both the accuracy

[15], [16] and the efficiency [17], [18] of the classification.

Another remarkable attempt [19]–[21] adopting ensemble ap-

proaches on several TS representations (e.g., Shapelet-based,

similarity-based, interval-based etc.) shows a superior accuracy

to one single representation classifiers, where TS features

are from different representation domains, and can not be

presented in a single form.

The optimization of TS feature extraction and model con-

struction process allows us to strive for a low prediction

error, and stay as close as possible to Time Series’ nature

Concept [22], which refers to the target variable that the

learning model is trying to predict. Most TSC approaches are

biased towards learning from an off-line Time Series dataset,

with the assumption that data instances are independently and

identically distributed (i.i.d) within a particular concept, but

rarely consider the streaming context, where a gradual change

of the concept happens along with the input of TS stream,

that is Concept Drift. For instance, the most accurate ensemble

classifiers [19], [20] are not good options in streaming context

due to their complex architecture. Lazy classifiers on Time

Series such as Nearest Neighbor (1-NN) [23] and dictionary

based approaches [11] are applicable for streaming context.

However, every input instance will be considered to adjust the

inner concept, which requires potentially a large buffer space

and will bring a huge computation cost. Recent Deep Neural

Network (DNN) approaches [24]–[27] on TSC are capable of

tuning the model incrementally, but stay always in an awkward

position for the lack of explainability, which is required by

domains like healthcare where questions of accountability and

transparency are particularly important.

Shapelet, as a shape-based feature in TS, which is widely

adopted by the community for its reliability and interpretabil-

ity, provides a possibility to fulfil the aforementioned require-



ments. With an advanced work in [28], the explainability of

Shapelet Extraction process is ensured even to non-expert,

which offers us an option to further explore the streaming

context conserving the current goodness.

To fill the gap between Time Series Classification and

data streams processing, in this paper, we propose a TS

stream learning algorithm, where TS features and models

can be updated with consideration of Concept Drift. The

incremental version of previous Shapelet work [28] under

Spark framework allows us to further explore the Test-then-

Train strategy, to evaluate the learning model constantly on

newly input instance, then update the model regarding to the

evaluation result. The cached information under old concept

will be eliminated gradually by an elastic caching mechanism,

which deals with the challenge of infinite streaming instances.

The main contributions of this paper are to achieve the

following goals:

1) Scalability: Our algorithm conserves the scalability of

Shapelet Extraction [28] in streaming context, which is

always parallelizable in a remote Spark cluster with a

minimum communication cost between distributed nodes.

2) Shapelet Evaluation: We propose a novel strategy to

evaluate Shapelet, which shows the first attempt of trans-

ferring the techniques in Time Series community to Data

Stream community.

3) Test-then-Train: The novel strategy, not only acceler-

ates the incremental Shapelet extraction in stable-concept

context, but also helps with detecting Concept Drift in

streaming context by Test-then-Train technique.

4) Explainability: The algorithm shows not only inter-

pretability of extracted features (i.e., Shapelets), but also

a strong explainability of Shapelet Evolution in dynamic

source context.

5) Traceability: The system allows to trace and explain the

learning model at different time ticks, which gives us

a possibility to supervise the system and back up the

historical features.

The rest of this paper is organized as follows. In Section

2, we review the background and state-of-the-art approaches

which are useful for our research problems. Then, Section

3 shows our system in both TS stream contexts of stable

concept and drifting concept. Section 4 shows an empirical

evaluation of our method on real-life datasets. Finally, we give

our conclusions and perspectives for future work in Section 5.

II. BACKGROUND

A. Definitions and Notations

We start with defining the notions used in the paper:

Definition 1: A Time Series T is a sequence of real-valued

numbers T=(t1, t2, ..., ti, ..., tn), where n is the length of T .

Definition 2: Time Series Stream STS is a continuous input

data stream where each instance is a Time Series: STS=(T1,

T2, ..., TN , ...). Notice that N increases with each new time-

tick.

Definition 3: Time Series Chunk Ct,w is a Time Series

micro-batch at time-tick t with window size w in STS :

Ct,w=(Tt−w+1, Tt−w+2, ..., Tt).

Definition 4: Cached Dataset Dt is a set of time series Ti,

and class label ci, collected after time tick t. Formally, Dt=

〈Tt, cjt〉, 〈Tt+1, cjt+1
〉, ..., 〈TN , cjN 〉, where N is the time-

tick of the most recent input instance. C = c1, c2, ..., c|C| is

a collection of class labels, where |C| denotes the number of

labels.

Definition 5: A subsequence Ti,m of Time Series T is a

continuous subset of values from T of length m starting from

index i: Ti,m = (ti, ti+1, ..., ti+m−1), where i ∈ [0, n−m+1].
Definition 6: Shapelet ŝ is a time series subsequence which

is particularly representative of a class. As such, it shows a

shape which can distinguish one class from the others.

Definition 7: Euclidean Distance(ED) between two time

series Tx,m, Ty,m is expressed as follows:

EDx,y =

√

√

√

√

m
∑

i=1

(tx,i − ty,i)2 (1)

Definition 8: Distance Profile DPi is a vector which stores

the Euclidean Distance between a given subsequence/query

Ti,m in source T and every subsequences T ′j,m of target T ′.

Formally, DPm
i = (DPm

i,1, ..., DPm
i,j , ..., T

m
i,n′−m+1), where

DPm
i,j = dist(Ti,m, T ′j,m), ∀j ∈ [0, n′ − m + 1], n′ is the

length of T ′.

Each element in DPi is calculated by Euclidean Distance

between z-normalized subsequences [28]. From Fig. 1(a), we

can visually obtain the position of Query’s Nearest Neighbor

(1NN) in T ′ from the lowest point in DPi. Authors in [29]

propose MASS which is considered as the fastest exact distance

measure between two Time Series. MASS computes Distance

Profile based on Fast Fourier Transform (FFT), which requires

only O(nlogn) time and is independent of query’s length,

instead of O(nm2) [14] by classical sliding window measure.
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Fig. 1: (a) Distance Profile between Query Ti,m and target time series
T ′, where n′ is the length of T ′. Obviously, DPi,j can be considered
as a meta TS annotating target T ′; (b) Matrix Profile between Source
time series T and Target time series T ′, where n is the length of T .
Intuitively, MPi shares the same offset as source T

Definition 9: Matrix Profile MP is a vector of

distance between every subsequence Ti,m in source T

and its nearest neighbor T ′j,m in target T ′. Formally,

MPm = (MPm
1 , ...,MPm

i , ...,MPm
n−m+1), where MPm

i =
min(DPm

i ), i ∈ [0, n−m+ 1], n is the length of T .

Unlike the distance profile, the matrix profile is a meta TS

annotating the source TS. As shown in Fig. 1(b), the lowest



point in MP show the position of query which has the most

similar matching in target TS.

Definition 10: Representative Profile RPC
T is a vector

of representative power of subsequences in T for class C:

RPC
T = (RPC

T1
, ..., RPC

Ti
, ...RPC

Tn−m+1
)

The representative power of subsequence Ti in class C is

defined as:

RPC
Ti

= avg(MPTi,T ′) (2)

where T ′ ∈ DC
t . Intuitively, RPC

Ti
is a normalized distance

between Ti and global TS instance cluster of class C, it

represents the relevance between the subsequence Ti (i.e., the

candidate Shapelet) and the class. As shown in Fig. 2 (b)(d),

a threshold can be set to show the starting index area in T ,

where the subsequences are representative for class C.

Definition 11: Discriminative Profile DiscmPT is a vector

of discriminative power of subsequences in T :

DiscmPT = RPNonC
T −RPC

T (3)

The discriminative power of Ti in dataset shows the difference

of representative power of candidate Shapelet from its own

class to the others (OVA, one-vs-all), which follows similar

heuristics in [30], where authors proved OVA strategy in

Shapelet quality assessment performs better than traditional

Decision Tree approach [14] in both accuracy and efficiency

metrics. Intuitively, Discriminative Profile can give a global

view of the important patterns’ positions over a Time Series.

As shown in Fig. 2 (f)(g), the highest point in the profile shows

the position of the sub-series in T , which has the biggest

skewing of relevance between class C and other classes.

Through setting a power threshold, the discriminative pattern,

that is the candidate Shapelet, can be visually identified in T

by their discriminative power.
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Fig. 2: (a) Time Series T with class C. (b,c) Matrix Profile set for T
with TS instances in different classes. (d,e) Representative Profile of
T in different classes. A threshold can determine the representative
area in T. (f) Discriminative Profile of T in dataset. The highest point
in DiscmPC

T identifies the most discriminative pattern’s in T .

B. A Brief Review of the SMAP algorithm for TSC

Matrix profile [29] provides a meta-data which facilitates

the representation of a complex correlation between two time

series. Authors in [28] propose SMAP, a scalable algorithm for

Shapelet Extraction on Matrix Profile, which ensures mean-

while the parallelism in Spark cluster, and the explainability

of extraction process to a non-expert.

As shown in Algorithm 1, considering time series as the

smallest processing unit between Spark nodes, SMAP firstly

broadcasts the dataset to distributed nodes in order to reduce

the communication cost from repetitive access of common

data. Then, each cluster partition shares the computing tasks

for a set of TS, and extracts the most discriminative sub-

series of various length in each processing unit. Each extracted

sub-series can be considered as a candidate Shapelet, which

is assigned a distance threshold defined by its representative

power in its own class. The threshold can determine the

inclusion between the candidate Shapelet and a TS. A strategy

to check if T contains a candidate Shapelet ŝ can be defined

as the following:

Inclusion(T, ŝ) =

{

true, if dist(T, ŝ) ≤ ŝ.distThresh

false, otherwise
(4)

Each TS unit is assigned an unique Hash ID to reduce

the volume of transferred data between nodes. The TS ID,

as well as the discriminative power and threshold distance

of its contained candidate Shapelets, will be output as the

computing results of the partition. Finally, a single aggregation

process between nodes is required to obtain the Shapelet

result of different classes. The whole extraction process can

be visualized with a strong explainability, and generates high

interpretable results.

Algorithm 1: SMAP (Shapelet extraction on MAtrix Profile on Spark)

Input: Dataset D, classSet Ĉ, k
Output: Ŝ

1 lmin ← 0.1 ∗ getMinLen(D), lmax ← 0.5 ∗ getMinLen(D),

2 DiscmP ← [], distThresh ← [], Ŝ ← ∅
3 D.broadcast(); //each TS has an unique ID

4 MapPartition (Set of 〈ID, T 〉 : Tset)

5 for 〈ID, T 〉 ∈ Tset do

6 for m← lmin to lmax do

7 DiscmP [m], distThresh[m]←
computeDiscmP (T,D,m)

8 DiscmP [m]← DiscmP [m] ∗
√

1/l

9 DiscmP, distThresh ← pruning(DiscmP, distThresh)
10 emit(ID,DiscmP, distThresh)

11 MapAggregation (class, (ID,DiscmP, distThresh))

12 for c ∈ Ĉ do

13 Ŝ′ ← getTopk(DiscmP [c], distThresh[c], k)

14 Ŝ ← Ŝ ∪ Ŝ′

15 return Ŝ

To sum up this section, Discriminative Profile provides a

possibility to extract the interpretable patterns in an explain-

able manner. The adoption of MASS essentially accelerates

the extraction process compared to using pruning techniques

based on brute force approach [14]. SMAP provides a parallel

processing mechanism to conduct the extraction in a minimum

communication cost on Spark cluster. In the next section,

we will show an advanced algorithm which, when applied

on Spark cluster, is capable of updating Shapelet results by

adopting an incremental model in dynamic source context.



III. ALGORITHM AND SYSTEM STRUCTURE

In this section, we start by studying the incrementality

of SMAP, which is a necessary condition for learning in

streaming context. Then we propose the evaluation strategies

to accelerate incremental learning process and adapting it to

streaming context considering Concept Drift.

A. Incremental SMAP (ISMAP)

Typically, a non-incremental algorithm requires to re-pass

the existing dataset and conduct a large amount of redundant

computations. In Algorithm 2, we show Incremental Shapelet

extraction on Matrix Profile on Spark (ISMAP), which avoids

essentially the repetitive computations on existing dataset.

As in Spark environment, the communication cost between

distributed nodes is a key factor of system’s efficiency. The

computing task in each Spark partition should be relatively

independent without frequent exchange of intermediate results

with other partitions. In light of this, we need to make use

of the parallel mechanism to well manage the allocation of

computing tasks.

Algorithm 2: ISMAP(Incremental Shapelet extraction on MAtrix Profile on Spark)

Input: Partition [ID, T,DiscmP, distThresh], New input TN , classSet Ĉ,

k
Output: Ŝ

1 lmin ← 0.1 ∗ getMinLen(D), lmax ← 0.5 ∗ getMinLen(D),

2 DiscmP ← [], distThresh ← [], Ŝ ← ∅
3 〈IDN , TN 〉.broadcast();

4 MapPartition ([ID, T,DiscmP, distThresh])
5 /* 1. compute the Matrix Profile between TN and all TS in dataset */

6 /* 2. update the current DiscmP of all TS in dataset */

7 /* 3. prepare MPTN
elements to compute DiscmPTN

*/

8 for m← lmin to lmax do

9 MPT [m]← computeMP (T, TN ,m)
10 MPTN

[m]← computeMP (TN , T,m)
11 DiscmP [m], distThresh[m]←

updateDiscmP (DiscmP [m], distThresh[m],MPT [m])

12 DiscmP, distThresh ← pruning(DiscmP, distThresh)
13 emit(ID, T,DiscmP, distThresh,MPTN

)

14 MapAggregation (∗, (ID, T,DiscmP, distThresh,MPTN
))

15 DiscmPTN
, distThreshTN

=
computeDiscmP (collect(MPTN

))

16 DiscmPTN
← DiscmP ∗

√

1/l
17 DiscmPTN

, distThreshTN
←

pruning(DiscmPTN
, distThreshTN

)
18 cache(IDTN

, DiscmPTN
, distThreshTN

)

19 MapAggregation (class, (ID,DiscmP, distThresh))

20 for c ∈ Ĉ do

21 Ŝ′ ← getTopk(DiscmP [c], distThresh[c], k)

22 Ŝ ← Ŝ ∪ Ŝ′

23 return Ŝ

As shown in Algorithm 2, we assume that each Spark

partition keeps a set of Time Series with their Discriminative

Profiles and corresponding Threshold Distance sets. The newly

input Time Series TN will be broadcast to each distributed

node. Information in TN should be extracted and merged to

existing knowledge base, which can be carried out into two

steps:

1) Update existing Shapelets: With newly input instance

TN , existing candidate Shapelets should update their

representative power in each class, and discriminative

power in current dataset.

2) Evaluate new candidate Shapelets: TN will introduce

new candidate Shapelets of various length, which should

be evaluated and placed into Shapelet ranking list by their

discriminative power.

Step (1) is shown in line 9,11, from the Formula 2 and

3, we can observe that the linearity of Discriminative Profile

makes the fact that each existing TS only need one single

Matrix Profile computation with TN to update the candidate

Shapelets. As for Step (2), the Discriminative Profile com-

puting of TN is shared on different Spark partitions, where

Matrix Profiles with existing TS instances are computed in

line 10, an aggregation process in line 14-18 extracts the

discriminative patterns in TN , which will be aggregated with

existing candidate Shapelets and update the output results in

line 19-22.

Like classical incremental algorithms, ISMAP takes all input

instances into account, which means every input TS instance

will be imported into the system to update the Shapelet, even

if the computing imports no valuable information into the

system, that is, the information contained in the instance is

repetitive with that in the knowledge base. Evidently, we are

capable of avoiding the redundant information’s computation

by adopting an interleaved Test-then-Train strategy [31] with

an extra Shapelet evaluation process over input instances.

B. Shapelet Evaluation

The intuition behind the evaluation procedure is that once

we have a bad evaluation result, we need to import the instance

batch into Shapelet Extraction process, to update the output

Shapelet result. As the evaluation time O(n − m + 1) for a

TS instance is much less than that of extraction computing

(O(Nn3logn)), then an evaluation module can improve the

system’s efficiency by preventing the computation of certain

valueless instances. However, how to define that an instance

is valueless stays a problem to resolve.

The classical Shapelet-based approach [14] supposes that

a Time Series T can be classified by the inclusion of a

class-specified Shapelet ŝ. (i.e. if dist(T, ŝ) ≤ ŝ.distthresh,

then T.class = ŝ.class). The threshold distance of Shapelet

gives a split point to decide the TS-Shapelet inclusion. As

shown in [32], various approaches (e.g, Information Gain

(IG), Kruskal-Wallis (KW) and Mood’s Median (MM)) can be

applied for both Shapelet assessment and split point decision.

Representative Profile and Discriminative Profile achieve the

same effect with these techniques but in a more interpretable

manner. Intuitively, we are capable of deciding whether to

import a TS instance into Shapelet Extraction process by

evaluating its prediction results on current learning model.

The Loss Measure is intended to detect the shift between the

learning model and the inner concept of data source. In the

context of Shapelet, the distance between the learned Shapelets

and input instance is able to represent the loss to some extent.

Typically, the distance is compared with Shapelets’ threshold

distance, which derives the 0-1 Loss Function:

L(Y, h(T )) =

{

0, Y = h(T )
1, Y 6= h(T )

(5)



where

h(T ) =
{

C, if dist(T, ŝ) ≤ ŝ.distThresh

nonC, otherwise

However, by TS-Shapelet inclusion technique, two Time

Series with similar distance to a Shapelet may obtain different

classes. In addition, a good prediction result of input TS

instance with current Shapelets doesn’t mean that the instance

contains no useful information for adjusting the learning

model. The 0-1 Loss Function analyzes the surface phe-

nomenon of the prediction but ignored the deep information

behind the arbitrary split point technique. A loss measured by

a crisp 0-1 Loss Function is then ill-adapted.

When dist(T, ŝ) ≤ ŝ.distThresh, the prediction result is

relatively acceptable. The problem then becomes how to find a

balance between time efficiency and TS information checking

(i.e., the exhaustive information extraction). The distance

between TS and Shapelets describes the shift between real and

learned concept, a small distance leads to a reliable prediction

result. As the distance measure is usually data-dependant,

and the absolute distance value varies with datasets, then

a normalized measure describing the shift scale is required.

To this end, can we just convert the TS-Shapelet inclusion

problem to the possibility that a TS contains the Shapelet?

As extracted Shapelets try to separate one class to oth-

ers, TSs in different classes tend to be concentrated on the

split point, which causes the main error in prediction. Then

we assume that dist(T, ŝ) satisfies Gaussian distribution, as

shown in (6), the loss can be smoothed by Sigmoid function by

considering distance distribution. The split point of ŝ defines

the expectation σ of the distribution.

L(Y, h(T )) =
1

1 + e−(x−σ)
, σ = ŝ.distThresh

x = min(dist(TC
, ŝ)), ŝ ∈ Ŝ

C

(6)

As shown in Fig. 3, the smaller the loss, the greater the

possibility that T will contain the Shapelet. Intuitively, a loss

threshold ∆ can be set by user for ISMAP to control the

extraction from input instance, and update incrementally the

Shapelet to approach the real concept of data source. When

∆ is set to 0.5, it has the same effect as 0-1 Loss Function.
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Fig. 3: Loss measure of Time Series by Sigmoid Function and 0-1
Loss Function, Time Series in different classes are distributed around
the split point of Shapelet

However, a stable concept does not hold in several real-life

scenarios. For instance, with the soundness of the knowledge

in a particular domain, the labeling of newly input instances

may evolve gradually, leading to a concept drift. Therefore,

the most recent training instances should contribute more than

the oldest ones to the target prediction. Then the problem

becomes the Concept Drift detection in a Time Series Stream

by monitoring the loss function. Conserving the interpretability

and explainability of the algorithm, ISMAP can be extended

to the context of TS Stream by extracting adaptive features.

C. Adaptive feature extraction from Time Series Stream

As shown in Fig. 4, the system of extracting adaptive

Shapelets from Time Series Stream is composed by Shapelet

Extraction, Evaluation Bloc and Caching Mechanism. We take

TS Chunk Ct,w as minimum input unit which contains a

number of continuous TS instances: Ct,w=(Tt−w+1, Tt−w+2,

..., Tt), where t is the time-tick, w is the window size. By

adopting the Test-then-Train strategy, the main idea here is to

evaluate continuously the shift between learned concept and

real concept in data source (i.e., Test). Once a Concept Drift

is detected, the input chunk will be imported into Shapelet

Extraction bloc to update the learning model (i.e., Train). Both

Shapelet initialization and updating process are parallelizable

on Spark cluster, which makes use of RAM as caching unit

to lower the I/O cost.

Fig. 4: System Structure in TS Stream context with Concept Drift

1) Shapelet Extraction: The computing process follows the

same methodology with ISMAP, which allows TS instances

in the input chunk to be partitioned on various Spark nodes,

the discriminative patterns in each partition will be extracted

individually and merged between partitions by their ranking

power. The Shapelet ranking list is then composed by power-

updated existing Shapelets and newly imported candidates.

2) Learned Concept Evaluation: As aforementioned, the

loss of a Shapelet on input instances can describe its shift to

real concept of data source. With the same methodology, once

a concept drift is detected in data stream, the analysis tends

to be more complicated. The challenge here is to distinguish

the measured loss from two aspects:

- Incomplete Extraction: As main constraint in Shapelet Ex-

traction, insufficient training instances (i.e., under-fitting) will

bring a relative high loss. More data will make the learning

model approach more the inner concept.

- Concept Drift: The measured shift can only reflect the

distance to a stable concept, a big shift will be observed

using out-of-date learning model.



Fig. 5: Elastic Caching Mechanism for streaming instance chunk in memory

In light of these challenges, an advanced analysis on detect-

ing the Concept Drift from measured loss is required. That is,

not only to measure the loss from each TS Chunk, but also

to propose a strategy to analyse the loss. Based on the loss

definition in (6), we define the average loss for a TS chunk

CN,w:

LC(N) =
1

w

w
∑

k=1

L(YN−w+k, h(TN−w+k)) (7)

Concept Enrichment: As mentioned in III-B, an user-defined

loss threshold ∆ can be set to decide whether to import

the chunk into the system to enrich the concept. That is:

ImportChunk = True if LC(N) ≤ ∆.

Concept Drift detection: Page-Hinkley test (PH) [31] is a

typical technique used for change detection in signal process-

ing. It allows a loss tolerance for the signal. The sequential

test on the variance which considers that normal operation cor-

responds to a certain variance and a drift being characterized

by an increase in this variance. Here we define a cumulative

difference between the observed loss and their mean up until

the current time:

mN =

N
∑

t=0

(LC(t)− Lavg(t)− δ) (8)

where Lavg(t) is the average loss until the current time tick t,

δ specifies the tolerable magnitude of changes. The minimum

value of mN is defined as MN = min(mt, t = 1...N). PH

test will measure the difference between MN and mN :

PHN = mN −MN (9)

Intuitively, the difference reflects the degree of Concept Drift,

when it exceeds a user-specified threshold λ, then the Concept

Drift is detected.

3) Caching Mechanism: As the discriminative power of a

candidate Shapelet is based on its global distribution in dataset,

the fact that TS instances should be cached in memory is then

a necessary condition of Shapelet Extraction. This is the main

difference compared to Concept Drift detection in classical

data streams, where it’s possible to have one single pass on

input instance. Then the main challenge here is to bridge the

gap between TS and data stream analysis, that is, to consider

the nature of Shapelet in Time Series Stream (i.e., part of

data instances need to be cached), and propose a Shapelet-

based caching mechanism in streaming context, meanwhile the

caching volume should not increase indefinitely along with the

never-ending TS Stream.

As Concept Drift is the fact that the prediction targets at

different time tick are different, the previous learned concept

is inapplicable to current input data. Conversely speaking,

the fresh extracted concept doesn’t match previous prediction

target. This fact opens a path to optimize proactively the data

caching procedure in memory. Considered as a complement

to the global system shown in Fig. 4, the caching mechanism

is detailed in Fig. 5. Once a Concept Drift is detected in

TS stream, the TS chunk will be cached into memory. As

mentioned in ISMAP, newly input chunk will generate its

Matrix Profile set, and update those of previously cached

chunks, which eventually leads to the update of Shapelet list in

the learned concept. When there is a state transition in Concept

Drift detection, the extraction of a fresh concept is then

finished which is applicable for streaming instances coming

afterwards. The detection of this transition state triggers then

a cache elimination procedure.

The elimination procedure is based on the fact that the

prediction target of an old TS Chunk is not compatible with

the fresh learned concept. By evaluating the cached chunks

chronologically, we aim at finding the transition border where

historical chunk starts to match the fresh updated concept,

which is a reverse process to the detection of cache elimination

trigger. We assume that Ct,w is the oldest chunk cached in

memory, after a trigger is detected, the evaluation will be

conducted from Ct,w to more recent chunks using the fresh

learned concept. If the prediction target in Ct,w matches the

fresh concept, that means Ct,w is in the frame of the fresh

concept, the chunks in later time ticks also contributes to the

concept’s tuning, which can be kept in memory. Otherwise,

Ct,w should be removed from cache to eliminate the negative

effect to the fresh learned concept. The process will not stop

until a transition border is detected. By this proactive mech-

anism, the system is capable of caching a stable volume of



data in TS Stream context, and generating adaptive Shapelets

in the frame of drifting concept.

IV. EXPERIMENTS AND RESULTS

All the programs are implemented under Python 3.6. The

source code, as well as a demonstration video [33] can be

found in our project page1. The Shapelet Exploration process

can be either conducted at local or on a remote Spark cluster.

We provide also an 1-click cluster based on Docker, to

facilitate the replay of the distributed test offline by the user.

A. Experimental design

The experiment is conducted by two steps: A). We test the

incremental feature and reliability of ISMAP after adopting

Shapelet Evaluation process in Test-then-Train strategy. We

evaluate the improvement of Shapelet Extraction in both

efficiency and accuracy on data source with stable concept;

B). We check the reliability of adaptive Shapelet Extraction

from TS stream with Concept Drift.

-Datasets: UCR Archive [34] is the most complete TS collec-

tion in the community, where the datasets are collected from

diverse domains, such as readings from Image Outlines, Sensor

Readings, Motion captures, spectrograph, and so forth. Each

domain matches to certain problem type, which can be best

tackled by a specific approach. Authors in [35] studied in detail

the approaches and their matching problem types, and pointed

out that Shapelet-based method performs relatively better in

readings of Sensor data, ECG data, Border-converted images,

etc. To this end, we conduct our first incremental experiments

on 14 shapelet-characterized datasets in UCR Archive, instead

of testing all datasets under various problem types.

However, when we switch to streaming context where Con-

cept Drift happens in TS flow, to the best of our knowledge,

currently, the community doesn’t collect the dataset which

reflects a such phenomenon, due to the fact that the problem

hasn’t been studied before. Therefore, we generate synthetic

datasets by manually adjusting the data source to comply

the test scenario. Instead of generating data from scratch to

comply Shapelet features, the synthetic data is based on the

datasets Trace and ECG5000 (see Table I) from two domains,

which have a high reliability in Shapelet-based approaches and

eligible for simulating the Concept Drift scenario by changing

the class within some chunks on different time ticks.

-Data Augmentation: Public datasets, especially those com-

monly used with shapelets, have relatively small size if we

compare them to typical dataset in data mining2. A larger

number of instances is required for Concept Drift assessment

in the streaming TS context. Adding noise is a typical way

for data augmentation, as ISMAP extracts a range of patterns

from each Discriminative Profile and then merge them by their

discriminative power, a range-based extraction [36] rather than

1https://github.com/JingweiZuo/TSStreamMining
2Especially for TS Classification, hundreds or thousands of TS instances can

be considered as BIG DATA, due to the high time complexity of algorithms
in the domain which are based on exact distance measure. Our algorithm has
a time of O(N2n3logn), N: number of instances, n: TS length.

a single top value is noise resistant. We augment the data

volume by randomly putting noise in TS instances with a

random duration. The augmentation degree is set to 10 times of

original volume. We put 3 Concept Drifts equally distributed

on time axis. The total labelled instances are sampled into 3

equal-sized subsets with different concepts.

-Reproducibility and Parameters: The initial Shapelet Ex-

traction algorithm is based on [28], where the Shapelet length

m ∈ [0.1n, 0.5n] with a step of 0.25m, where n is TS

length. The advanced MASS algorithm (mass v2) [37] for

similarity measure is re-implemented under Python3, where

flat subsequences (i.e., those where all values are equal) are

ignored by the algorithm, as such a subsequence is mean-

ingless from the definition of Shapelet, and will produce

an error during MASS computation due to the empty value

of its standard deviation. The threshold in Discriminative

Profile is replaced by a top-K selection in the profile, which

follows the same value as final extracted Shapelet number k

(k = 10 for each class). As for the loss threshold for Shapelet

Evaluation, ∆ ∈ {0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50}. For

Concept Drift Detection, we take the loss threshold ∆ which

brings the highest accuracy in raw dataset. The tolerance

δ ∈ {0.10, 0.15, 0.30}, PH threshold λ = 0.4. The TS chunk

size is fixed at 5.

B. Results on ISMAP

Based on the explainable approach proposed in [28], we

test firstly the incremental feature of ISMAP by adopting inter-

leaved Test-then-Train strategy with an evaluation procedure.

The loss threshold ∆ ∈ [0.2, 0.5], with a step of 0.05, which

controls the sensitivity of system for importing TS instance

into Shapelet Extraction process.

Baselines: We focus on the feature itself, that is, to select

the best quality Shapelets from data source. Therefore, to test

the reliability of ISMAP, we take the Shapelet Tree methods

as baselines, rather than considering classifiers learned over

shapelet-transformed data [15]3. The Shapelet Tree methods

utilize different quality measures to extract the Shapelet and

predict target instance: a) Information Gain (IG) [14], b)

Kruskall-Wallis (KW) [32], c) Mood’s Median (MM) [32].

As quality measure’s calculation is negligible compared to the

total time cost, the computation time should remain at the same

level when they adopt the same distance measure (e.g., MASS),

and when ISMAP doesn’t adopt a Test-then-Train strategy.

Table I shows the accuracy performance comparison be-

tween baselines and our approach. Obviously, ISMAP achieved

the top performance on accuracy metric on more datasets

than any other classifier (12 of 14). Specifically for sensor,

motion and ECG data, ISMAP performs no doubt better than

other approaches, and achieved more than 20% accuracy

improvement in ECG5000.

Besides the accuracy advantage compared to the baselines,

the incrementality of ISMAP allows a flexible adjustment

3Nevertheless, the extracted high quality Shapelets can be concatenated
with Shapelet Transform methods for a higher accuracy, though it’s not our
focus here.

https://github.com/JingweiZuo/TSStreamMining


TABLE I: Shapelet Datasets in UCR Archive used for Incremental Test (ISMAP)

Type Name Train/Test Class Length IG KW MM ISMAP(best) Para. (∆) Comp. Ratio

Simulated SyntheticControl 300/300 6 60 0.9433 0.9000 0.8133 0.7007 0.35 46.7%

Sensor

Trace 100/100 4 275 0.9800 0.9400 0.9200 1 0.5, 0.45 26.0%
MoteStrain 20/1252 2 84 0.8251 0.8395 0.8395 0.9169 0.45 60.0%
SonyAIBO.I 20/601 2 70 0.8453 0.7281 0.7521 0.9151 0.4 95.0%
SonyAIBO.II 27/953 2 65 0.8457 - - 0.8583 0.4 63.0%
ItalyPower. 67/1029 2 24 0.8921 0.9096 0.8678 0.9466 0.45 25.4%

ECG
ECG5000 500/4500 5 140 0.7852 - - 0.9109 0.4 9.4%
ECGFiveDays 23/861 2 136 0.7747 0.8721 0.8432 0.9826 0.4 51.2%
TwoLeadECG 23/1189 2 82 0.8507 0.7538 7657 0.9337 0.5 47.8%

Images
Symbols 25/995 6 398 0.7799 0.5568 0.5799 0.8113 0.35 96.0%
Coffee 28/28 2 286 0.9643 0.8571 0.8671 0.9286 0.4 78.6%
FaceFour 24/88 4 350 0.8409 0.4432 0.4205 0.9886 except 0.45 62.5%
DiatomSize. 16/306 4 345 0.7222 0.6111 0.4608 0.8758 0.5 50.0%

Motion GunPoint 50/150 2 150 0.8933 0.9400 0.9000 0.9733 0.45 42.0%

Fig. 6: Results of Incremental Test (ISMAP) by adopting an extra Shapelet Evaluation procedure

between accuracy and time cost. Table I shows as well the

parameter ∆ which brings the best accuracy performance.

The parameter sets a loss threshold for Shapelet evaluation

during incremental extraction process, and decides whether

the input TS instance contains useful information for updating

existing Shapelets. The Compression Ratio is defined by the

proportion of imported valuable instances over total training

instances: Comp.Ratio =
nbr.instanceimported

nbr.instancetraining
, the ratio below

1 brings a better performance in both time and memory cost.

Fig. 6 shows a global view of accuracy and time cost tested

by ISMAP under different loss thresholds.

In general, we consider that a high loss threshold ∆ leads to

a high efficiency at the expense of certain accuracy. However,

from the result in Table I, for most of the datasets, ISMAP

gets the highest accuracy in range ∆ ∈ [0.4, 0.45], which is

reasonable from Fig. 3. On the one hand, a threshold loss close

to or greater than 0.5 will skip a large number of instances

which are around the split point and don’t make any quality

improvement for current Shapelets. Instead, the instances con-

tain valuable information for adjusting the quality of current

Shapelets and could introduce new candidates. Then classifier

will be overfit on small number of instances. On the other

hand, the accuracy performance is affected by random input

order of TS instances, the first extracted candidate Shapelets

will affect the evaluation of later TS instances, which brings a

small uncertainty for the number of instances to be imported

into the system. For instance, in FaceFour dataset, time cost

increases when ∆ changes from 0.3 to 0.35, that means more

instances are imported into system even with the increase

of threshold. Which is caused by the uncertainty. A small

loss threshold in early stage will be biased towards the initial

randomly imported TS instances and extracted Shapelets, and

reduce the acceptation space for true discriminative Shapelets

coming afterwards.

Nevertheless, most of the time the accuracy keeps on a

relative stable stage even with the increase of ∆, which can

be explained by the fact that the instances from the same class

are highly consistent, and share the common Shapelet features.

Therefore, the system efficiency can be largely improved with

an exchange of a negligible decrease of accuracy.

C. Results on adaptive features in TS Stream

For sake of clarity, we have selected for these experiments

datasets where Shapelet-based approach has a strong reliabil-

ity. Due to space limit, we only show the exploration results



Fig. 7: Results of Concept Drift Detection on ECG5000 dataset and augmented Trace dataset

for two testing contexts: ECG5000 dataset in the original

space and Trace dataset in the augmented space. We focus

on the explainable detection process of Concept Drift and the

reliability of the adaptive Shapelets around drift areas.

Fig. 7 shows the Concept Drift detection process on the two

datasets under different loss tolerance level. For ECG5000, two

drifts were put at time tick 167 and 333. The Concept Drifts

were detected by the system within the time periods [170,

195] and [340, 390], which are in strong accordance with the

true drifts in the dataset. The extracted Shapelets before each

drift period contain overall information of previous subset.

During the drift periods, TS chunks are evaluated to update the

current learned concept. A small adjustment time period (i.e.,

25 and 50 for two drifts respectively) over the entire subset size

proved the strong adaptability of the system. For augmented

Trace dataset, two drifts were put at time tick 333 and 667. The

drift detection mechanism stays reliable under different loss

tolerances, which lead to different time periods for adjusting

the learned concept. A high tolerance is capable of relieving

the effect of outliers or excessive feedback, and allows only

a continuous high loss to be considered as a Concept Drift.

Therefore, less chunks are imported into the system which

leads to less time cost. From the memory and time plot on

right Fig. 7, at the end of each drift adjustment area, the

cached information is largely eliminated, finally only 65 of 500

instances of ECG5000 dataset, 100 of 1000 (δ = 0.15) or 50

of 1000 (δ = 0.30) instances of Aug. Trace dataset, are cached

in the memory. The proactive caching elimination mechanism

shows its elastic feature. Besides, the later imported chunks

requires usually longer calculation time (the step becomes

longer in the time plot), as more chunks have been cached.

TABLE II: Evaluation in datasets with manually added drift

Dataset - i(Con. 1) ii(Con. 2) iii(Con. 2) iv(Con. 3)

Aug.Trace
(δ = 0.15)

Time tick 345 380 670 790

Test Accu. 0.9600 0.9900 0.9900 0.9800

Aug.Trace
(δ = 0.30)

Time tick 350 365 675 700

Test Accu. 0.9600 0.9800 0.9800 0.9700

ECG5000
(δ = 0.10)

Time tick 170 195 340 390

Test Accu. 0.9018 0.8783 0.8783 0.8927

In Table II, we show the reliability of the Extracted

Shapelets on 4 time ticks at the beginning/end of each drift

area4. The extracted Shapelets perform the same accuracy at

the two middle time ticks, which can be explained by the fact

that no chunks were imported since the learned Concept 2

was deemed enough reliable. Globally, the adaptive Shapelets

4We recall that the Trace testing dataset were augmented in the same
manner, where drifts were manually added.



show a high accuracy in such a streaming context with Concept

Drift, although the accuracy is a little lower than that in Table

I, as the training on the subsets gets less information than that

on the entire dataset.

V. CONCLUSION

In this paper, we studied the dynamic feature exploration

over Time Series Stream, which is based on the interpretable

Shapelet features and an explainable Shapelet extraction pro-

cess. An incremental Shapelet extraction under stable concept

with a novel Shapelet evaluation process is proposed, which

improved largely the system’s efficiency with an exchange of

a negligible decrease of accuracy. As for a non-stable concept

data source, we adjust the conventional strategies of Concept

Drift detection into the context of Time Series Stream, which

opens the path for a proactive elimination of data cached in

the memory. The system can be applied in the scenario where

an existing dataset should be enriched with new knowledge

but without human loop in the middle.

In the future work, we aim at exploring more challenging

scenarios where TS instances are weakly labelled, and the

Concept Evolution happens in the coming TS stream. More TS

features beyond the Shapelet domain and their compatibility

with streaming context will be considered as well.
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