

ISET: Incremental Shapelet Extraction from Time Series Stream

Jingwei ZUO, Karine ZEITOUNI and Yehia TAHER

DAVID Lab, University of Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, Versailles, France *{firstname.lastname}*@uvsq.fr

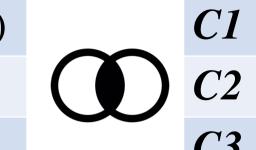
Background

Time Series Representations

- Global features of entire series (1-NN) **R**1
- R2 Summary statistics of sub-series
- R3 Motif (frequent patterns)
- **R4** Shapelet¹ (shape-based features)

Streaming Time Series S

• A continuous input data stream where each instance is a real-valued data: $S = (t_1, t_2, ..., t_N)$, where N is the time tick of the most recent input value.



Data Stream Challenges

C1 Infinite Length **C2** Feature Evolution

C3 Concept Drift C4 Concept Evolution

Evaluation Block (cont.) Concept Drift detection

• Page-Hinkey (PH) Test³: a typical technique for change detection in signal processing.

$$L_{C}(N) = \frac{1}{w} \sum_{k=1}^{w} L(Y_{N-w+k}, h(T_{N-w+k}))$$
$$m_{N} = \sum_{t=0}^{N} (L_{C}(t) - L_{avg}(t) - \delta)$$
$$M_{N} = min(m_{t}, t = 1...N)$$
$$PH_{N} = m_{N} - M_{N}$$

- $L_C(N)$: the average loss of newly input TS chunk
- m_N : the cumulative difference between the chunk loss and average loss until the current time. δ : <u>Loss Tolerance</u>
- M_N : the minimal cumulative difference recorded
- λ : <u>*PH threshold*</u> to detect a Concept Drift

• Concept Drift = False, otherwise

Time Series Stream S_{TS}

• A continuous input data stream where each instance is a Time Series: $S_{TS} = (T_1, T_2, ..., T_N)$. Notice that *N* increases with each new time-tick.

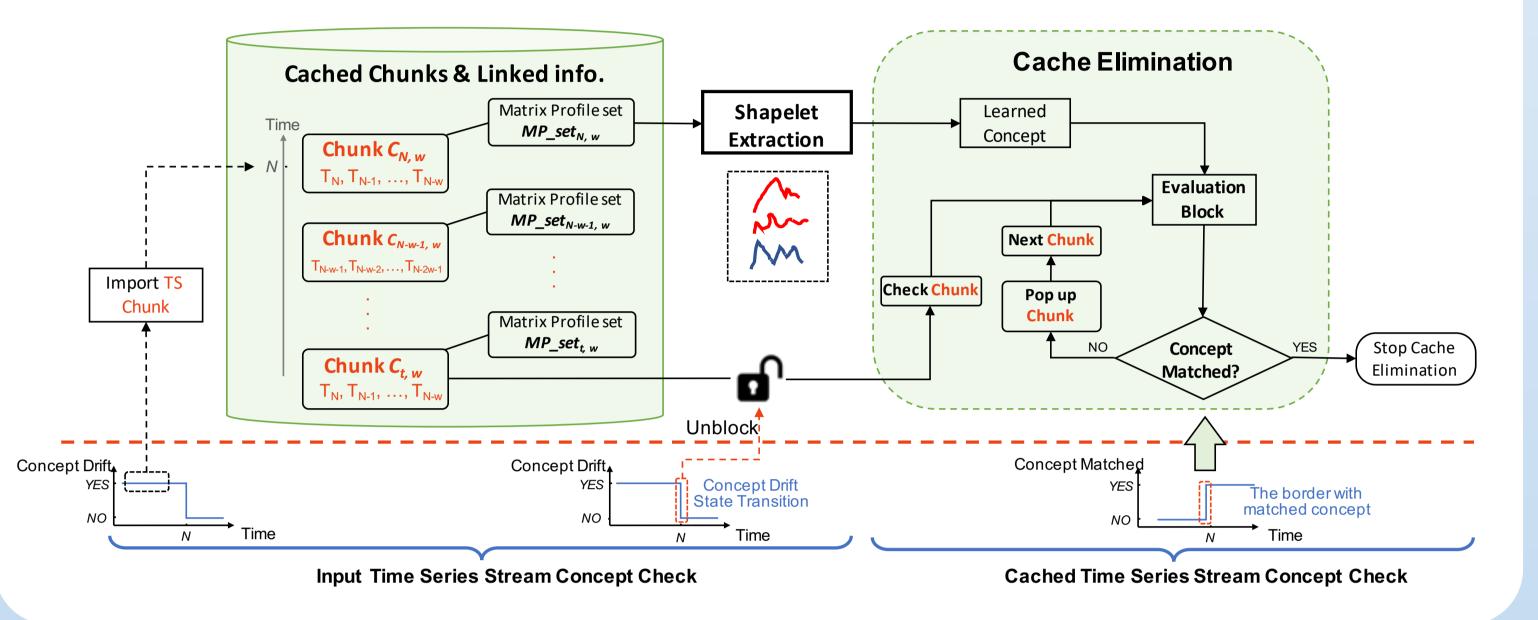
Research Focus:

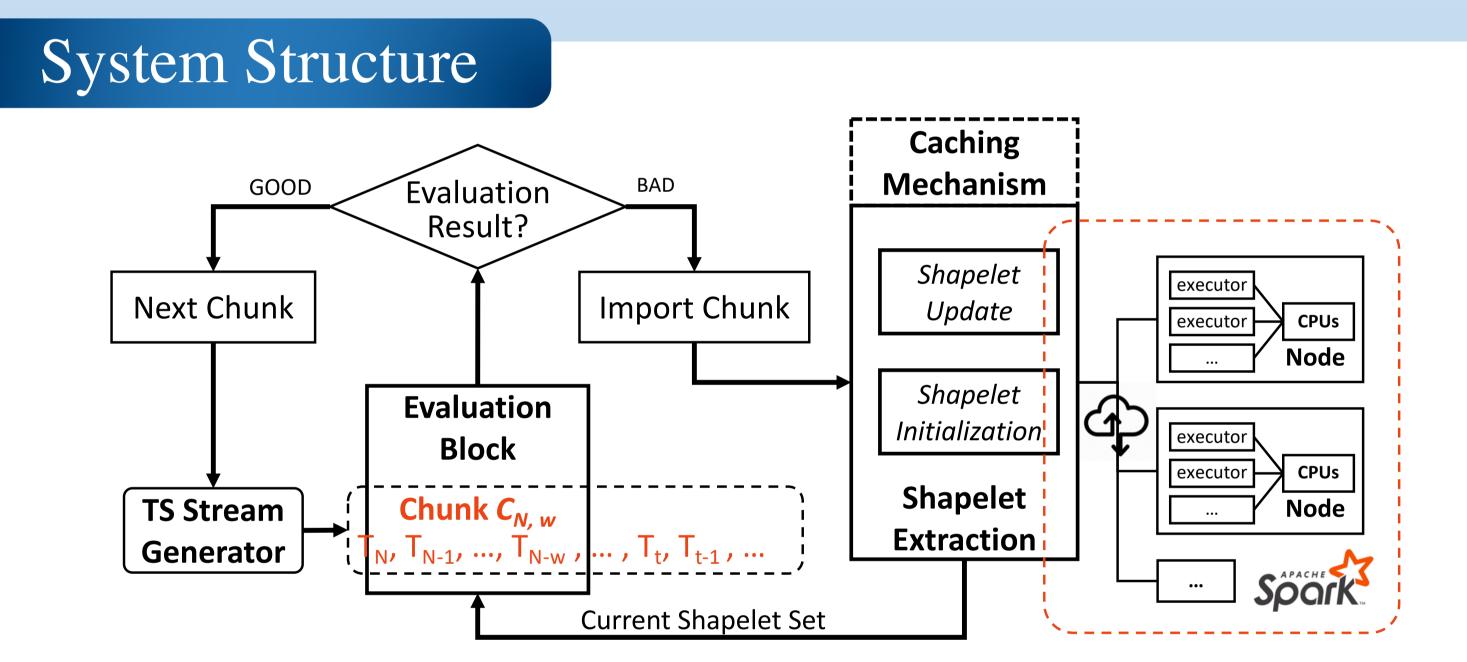
• $R4 + \{C1, C2, C3\}$ in Time Series Stream.

Problem Statement

- Low Scalability and Incrementality of Time Series representation approaches
- Classical Shapelet Evaluation is not suitable in streaming context
- Concept Drift detection should be adapted in TS Stream model
- Memory cost of infinite TS instances (Shapelet Extraction relies on a set of instances cached in the memory)

Elastic Caching Mechanism





Experimental Results

Incremental test under stable concept (14 Shapelet datasets)

\mathbf{Type}	\mathbf{Name}	Train/Test	Class	\mathbf{Length}	\mathbf{IG}	$\mathbf{K}\mathbf{W}$	$\mathbf{M}\mathbf{M}$	$\operatorname{ISMAP}(\operatorname{best})$	Para. (Δ)	Comp. Ratio
Simulated	SyntheticControl	300/300	6	60	0.9433	0.9000	0.8133	0.7007	0.35	46.7%
	Trace	100/100	4	275	0.9800	0.9400	0.9200	1	0.5, 0.45	26.0%
	MoteStrain	20/1252	2	84	0.8251	0.8395	0.8395	0.9169	0.45	60.0%
	SonyAIBO.I	20/601	2	70	0.8453	0.7281	0.7521	0.9151	0.4	95.0%
	SonyAIBO.II	27/953	2	65	0.8457	-	-	0.8583	0.4	63.0%
	ItalyPower.	67/1029	2	24	0.8921	0.9096	0.8678	0.9466	0.45	25.4%
	ECG5000	500/4500	5	140	0.7852	-	-	0.9109	0.4	9.4%
	ECGFiveDays	23/861	2	136	0.7747	0.8721	0.8432	0.9826	0.4	51.2%
	TwoLeadECG	23/1189	2	82	0.8507	0.7538	7657	0.9337	0.5	47.8%
	Symbols	25/995	6	398	0.7799	0.5568	0.5799	0.8113	0.35	96.0%
T	O gran	00/00	0	000	0 0649	0 9571	0.9671	0.0006	0.4	70 607

Accuracy Performance

Baseline: Shapelet Tree classifiers

- Information Gain (IG)¹
- Kruskall-Wallis (KW)⁵
- Mood's Median (MM)⁵

Scalability & Incrementality

Scalability:

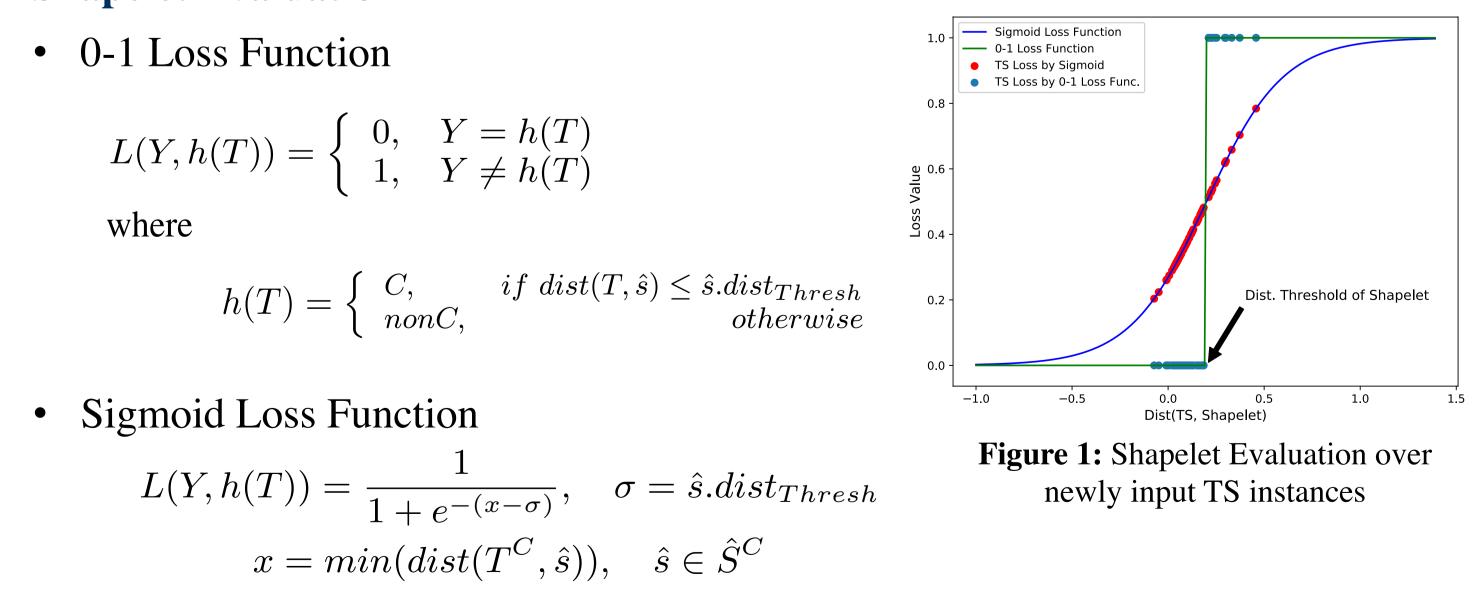
Previous work² ensures the scalability of Shapelet Extraction in Spark. **Incrementality:**

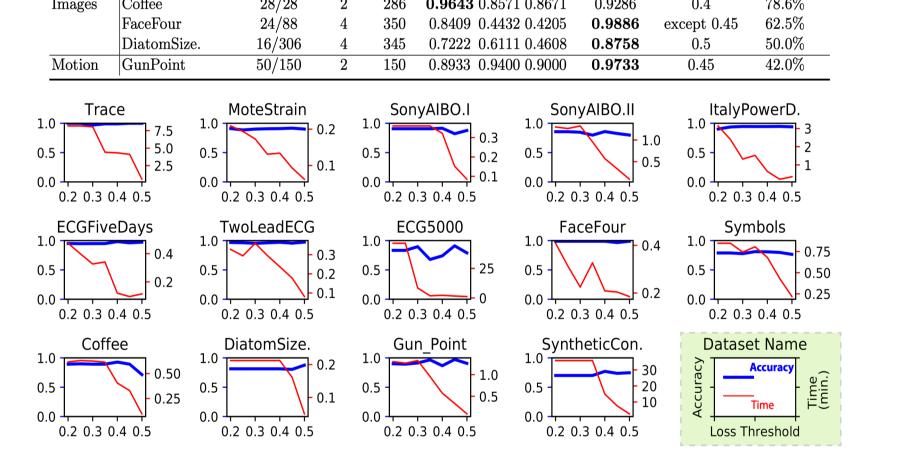
- The necessary condition to adapt TS representation in stream context.
- When new TS instance comes:
 - 1. Update the discriminative power of existing Shapelets
 - 2. Introduce new candidate Shapelets, compute their power
- Step 1 and 2 share the same computation process⁴ \bullet

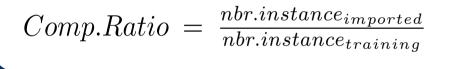
Evaluation Block (Shapelet Evaluation + Concept Drift Detection) **Shapelet Evaluation**

0-1

$$L(Y, h(T)) = \begin{cases} 0, & Y = h(T) \\ 1, & Y \neq h(T) \end{cases}$$

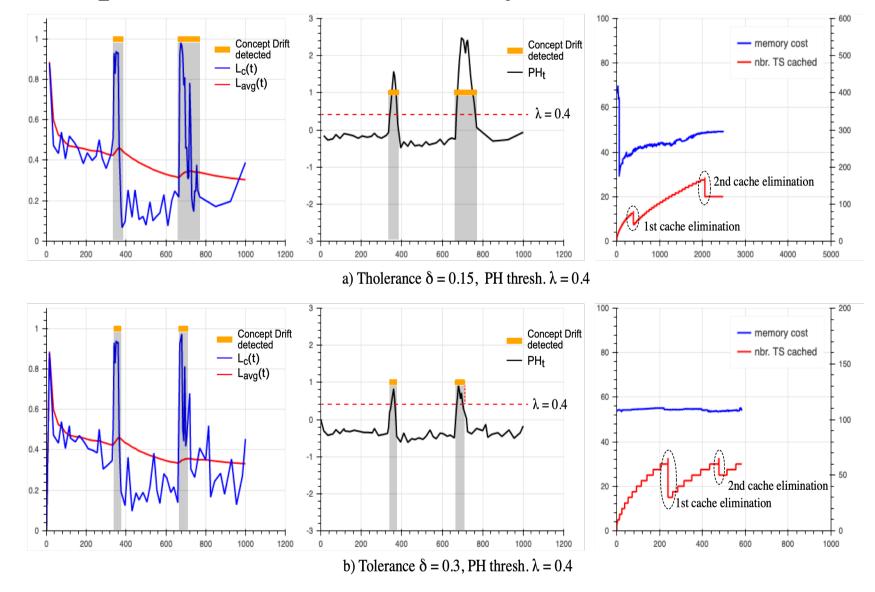






Trade-off between Accu. and Δ

- In theory, the higher the loss threshold Δ , the higher the efficiency, the lower the accuracy
- In practice, the highest accuracy falls in the range $\Delta \in [0.35, 0.45]$. Nevertheless, efficiency can be greatly increased with an exchange of a negligible decrease of accuracy.
- Adaptive feature test over Synthetic dataset with Concept Drift



Syntl	netic Trace dataset:
• Ra	andomly put noise for Data Augmentation
• 10	00/1000 training/testing instances
• Tv	vo drifts are inserted at time 333 and 667
Conc	ept Drift detection:

 $345/330 (\delta=0.15), 350/330 (\delta=0.30)$

- Caching cost:
- 100 of 1000 (δ =0.15), 50 of 1000 (δ =0.30)
- Cache is eliminated at the end of drift period

TABLE I: Reliability of Extracted Shapelets on 4 time ticks at the beginning/end of each drift area

Dataset	-	$\mathbf{i}(\text{Con. 1})$	$ii(\underline{Con. 2})$	$\mathbf{iii}(\underline{\mathrm{Con.}\ 2})$	iv(Con. 3
$A_{\rm res} T_{\rm rescal}(\delta = 0.15)$	Time tick	345	380	670	790
$Aug.Trace(\delta=0.15)$	Test Accu.	0.9600	0.9900	0.9900 0 675	0.9800
$A_{\alpha\alpha} T_{\alpha\alpha\alpha\alpha}(\delta = 0.20)$	Time tick	350	365	675	700
$Aug.Trace(\delta=0.30)$	Test Accu.	0.9600	0.9800	675	0.9700

A Loss Threshold Δ can be set to import incrementally the valuable instances.

Conclusion

- First attempt to explore incremental and adaptive features in Time Series Stream. We propose a novel Shapelet Evaluation approach which allows the transition from Time Series to Data Stream analysis.
- We propose an elastic caching mechanism which is capable of eliminating outof-date concepts/data proactively in the Time Series Stream model.
- The system is applicable in the scenario where an existing dataset is continuously expanded with new knowledge without human loop in the middle.

References

- 1. Lexiang Ye and Eamonn Keogh. "Time series shapelets: A New Primitive for Data Mining." In Proc. SIGKDD 2009
- J. Zuo, K. Zeitouni, and Y. Taher, "Exploring interpretable features for large time series with SE4TeC." In: EDBT 2019, Lisbon, Portugal. pp. 606–609 (2019)
- J. Gama, I. Zliobait E, A. Bifet, M. Pechenizkiy, and A. Bouchachia. "A Survey on Concept Drift Adaptation." ACM Comput. Surv. 1, 1, Article, vol. 1, 2013. 3.
- J. Zuo, K. Zeitouni, and Y. Taher, "Incremental and Adaptive Feature Exploration over Time Series Stream", AALTD@ECML-PKDD'19
- Jason Lines, and Anthony Bagnall, "Alternative Quality Measures for Time Series Shapelets", IDEAL 2012 5.

ECML-PKDD'2019 – European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Würzburg, Germany.

