

Representation Learning and Forecasting for Inter-related Time Series

Presented by Jingwei ZUO

DAVID Lab, UVSQ, Université Paris-Saclay

9th may, 2022

Jury members

Angela BONIFATIProfesseure, Université Claude Bernard Lyon 1RappEngelbert MEPHU NGUIFOProfesseur, Université Clermont AuvergneRappAntoine CORNUÉJOLSProfesseur, AgroParisTechExamRomain TAVENARDMaitre de conférence (HDR), Université de Rennes 2ExamKarine ZEITOUNIProfessor, UVSQ, Université Paris-SaclayDirecYehia TAHERMaitre de conférence, UVSQ, Université Paris-SaclayCo-er

Rapportrice Rapporteur Examinateur Examinateur

Directrice de thèse Co-encadrant de thèse

Time series applications

Electrocardiograph (ECG) o Arrhythmia? Traffic forecasting • Traffic flows in the future

Time series classification

Time series forecasting

Seism Earthquake signals

Motif discovery

Server machineAbnormal activities

Anomaly detection

Representation learning

Input data

Intermediate representation

Why time series representation learning?

- **High** dimensionality
- **Complex** data with inter-relationships
 - o temporal relationship
 - o inter-variable relationship
- Various learning tasks
 - Classification
 - Forecasting
 - Anomaly detection
 - o etc.

Challenges in time series representation learning

Complex data with inter-relationships

- \circ temporal relationships
- o inter-variable relationships

Complex application contexts

- \circ Streaming context
- \circ Single source & multiple sources
- Label shortage
- Missing values
- Interpretability & Explainability
- \circ etc.

> No standard representation which fits all the contexts

Context-related challenges

1. Streaming context

2. Labeling constraint

3. Data quality issues, e.g., missing values in Smart City sensor data

Data complexity challenges

- 2. Labeling constraint
- Temporal & Inter-variable relationships

- 3. Data quality issues, e.g., missing values in Smart City sensor data
- Temporal & Inter-variable relationships

Our contributions

- Streaming context
- Temporal relationships

C1: Dynamic feature learning from time series stream

- Labeling constraint
- Temporal & Inter-variable relationships

C2: Semi-supervised representation learning from multivariate time series

- O Data quality issues, e.g., missing values in Smart City sensor data
- Temporal & Inter-variable relationships

C3: Geo-located time series forecasting with missing values

Outline

\circ Introduction

○ Background

- Time series mining
- Time series representation
- ISMAP: Dynamic Feature Learning on Time Series Stream
- SMATE: Semi-supervised Learning on Multivariate Time Series
- GCN-M: Geo-located Time Series Forecasting with Missing Values
- $\circ~$ Conclusion and perspectives

SMATE

Time series mining

Background

Time series representation

- Time series $x \in \mathcal{R}^{T \times M}$
- Time series representation $r \in \mathcal{R}^{T' \times M'}$: a summarized feature set which accurately describes x
 - $\circ T' \times M' < T \times M$
 - Minimize Loss(x, r)
- \circ Different types of representations

• Apply a set of *rules* to transform the whole sequence

Transformation-based representation

SMATE

GCN-M

- Non data-adaptive
 - Unchanged parameters
 - e.g., Piecewise Aggregate Approximation (PAA)

PAA (equal-length window)

- Data-adaptive
 - Adaptive parameters
 - o e.g., Adaptive Piecewise Constant Approximation (APCA)

Piecewise transformations on ECG signal [Keogh et al., SIGMOD'01]

Local pattern-based representation

- Represent the whole sequence via (a set of) *local* patterns
- Discriminative patterns

3.

0

-3 -

-6

Background

Introduction

• Shapelets [Ye and Keogh, KDD'09]

50 100 ECGFiveDays - class 1

- Recurrent patterns
 - Frequent motifs [Wang et al., EDBT'16]

GCN-M

Model-based representation

- Representing time series via model parameters
- Statistic modeling

Background

o e.g., Markov Chains (MCs)

where $p_{ij} = p(X_t = j | X_{t-1} = i)$

Representing TS as a transition probability matrix [Sebastiani et al., IDA'99]

- Neural network-based modeling
 - Deep representations

Fully Convolutional Neural Network architecture [Wang et al., IJCNN'17]

Outline

\circ Introduction

- \circ Background
 - Time series mining
 - Time series representation
- ISMAP: Dynamic Feature Learning on Time Series Stream
- SMATE: Semi-supervised Learning on Multivariate Time Series
- GCN-M: Geo-located Time Series Forecasting with Missing Values
- $\circ~$ Conclusion and perspectives

$\circ\,$ Time series

 \circ Sequence of points ordered by time

Univariate Time Series (UTS)

 $x_1, \dots, x_T \in \mathcal{R}^M, M = 1$

$$x_1,\ldots,x_T\in \mathcal{R}^M, M>1$$

Data from SHL-Huawei dataset

 $\circ\,$ Streaming context:

• real-valued data flow (e.g., real-time sensor data)

- $\circ\,$ Time series in streaming context
 - $\circ~$ Historical time series, i.e., offline time series
 - $\circ~$ Streaming time series
 - $\circ~$ Time series stream

$\circ~$ Streaming time series

• A continuous input data stream where each i $S=(t_1, t_2, ..., t_N)$, where N is the time of the m

Man Mar Mar Mar Mar

Monitoring Forecasting

$\circ~$ Use cases:

- $\circ~$ Online monitoring
- \circ Real-time forecasting

- Time series stream (our context)
 - A continuous input data stream where each instance is a time series: $S_{TS} = (T_1, T_2, ..., T_N)$, notice that *N* increases with each new time-tick.

 $\circ~$ Use cases:

- Medical domain (e.g., ECG)
- Astronomy discovery (e.g., Star Light Curves)

Problem statement

$\circ~$ Complex temporal relationships in time series stream

- o Infinite length
- \circ Feature evolution
- $\circ \quad \text{Concept drift} \\$

- TS class 1
- TS class 2
- --- Class boundary

Objectives

- TS features in streaming context
 - Interpretability: visually interpretable
 - Incrementality: feature extraction is incremental with new-coming instances [Feature Evolution]
 - Adaptability: adaptive to the evolving data distribution [Concept Drift]
- \circ Learning model
 - Scalability
- Mainly designed for Time Series Classification (TSC) Task
 - **Training online**, classification on-line or off-line

Related work

$\circ~$ Time series representation for classification

	Feature representations	Classifier example	Related work		
transformation- based model-based	Raw representation	1-NN	1NN-ED, 1NN-DTW and its variants		
	Statistic summary	SVM or tree-based	TSF [Deng et al., Inf. Sci. 2013]		
	Deep representations	Neural Networks	mWDN [Wang et al., KDD'18], InceptionTime [Fawaz et al., DMKD'19], LSTM-FCN [Farim et al., arXiv'19]		
	Feature/model ensembles	Ensemble classifier	BOSS [Schäfer, DMKD'15] and its variants, HIVE-COTE [Lines et al., ICDM'17], TDE [Middlehurst et al., PKDD'20]		
	Local patterns	SVM or tree-based	RPM [Wang and Lin, EDBT'16], <u>Shapelet</u> [Ye and Keogh, KDD'09] and its variants		

Why Shapelet¹ in our context?

\circ Definition

 A representative shape in time series which is capable of distinguishing one class from the others

Most representative Shapelets in two classes from ECGFiveDays [Wang and Lin, EDBT'16]

Why Shapelet¹ in our context?

Explainable for Feature Evolution in time series stream

1. L. Ye and E. Keogh. "Time series shapelets: A New Primitive for Data Mining." In Proc. SIGKDD 2009

2. UCR Archive: https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

Why Shapelet¹ in our context?

Explainable for Concept Drift in time series stream

1. L. Ye and E. Keogh. "Time series shapelets: A New Primitive for Data Mining." In Proc. SIGKDD 2009

2. UCR Archive: https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

Shapelet-based methods

• Highly interpretable (decision-tree)

End-to-end (gradient-based learning)

• Generally not interpretable

Algorithm for Shapelet Extraction

Distance Profile & Matrix Profile¹

Figure 2.1: Distance Profile between Query $T_{i,m}$ and target time series T', where n' is the length of T'. $DP_{i,j}$ can be considered as a meta TS annotating target T'

Find the Nearest Neighbor of the Query

Figure 2.2: *Matrix Profile* between Source T and Target T', where n is the length of T. Intuitively, MP_i shares the same offset as source T

Find the closest pairs between two TS

1. Chin-Chia Michael Yeh et al. "Matrix Pro le I: All Pairs Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets." In Proc. ICDM 2016

Proposal - SMAP

• SMAP¹ : Shapelet Extraction on Matrix Profile

1. J. Zuo, K. Zeitouni and Y. Taher, Exploring interpretable features for large time series with SE4TeC. In Proc. EDBT 2019

Proposal - Incremental version of SMAP

• ISMAP¹: Incremental and adaptive Shapelet Extraction on Matrix Profile

Test-then-Train strategy

ISMAP - Evaluation Block

Shapelet Evaluation

Shapelet Evaluation over newly input TS instances

Concept Drift detection

Consider the evaluation loss as a signal

- Page-Hinkey (PH) Test: initially designed for change point detection in signal processing.
- \circ λ : <u>PH threshold</u> to detect a Concept Drift

$$\circ \quad Concept \ Drift = \begin{cases} True, \ PH_N \ge \lambda \\ False, \ otherwise \end{cases}$$

ISMAP - Elastic Caching Mechanism

• One-pass algorithm

 \circ $\,$ Only conserve the data under the current concept to be learned $\,$

• Conserve the historical Shapelets in the out-of-date concepts (optional)

Experiments

Research Questions:

$\circ~$ RQ1. Incremental learning with ISMAP

- Stable-concept time series stream
- To validate the incremental behavior

○ RQ2. Adaptive learning with ISMAP

- Drifting-concept time series stream
- To validate the drift detection behavior and elastic caching mechanism

Datasets:

- o 14 datasets from UCR Archive¹
- → Baselines (Shapelet Tree classifiers):
 - o Information Gain (IG) [Ye and Keogh, KDD'09]
 - Kruskall-Wallis (KW), Mood's Median (MM) [Lines and Bagnall, IDEAL'12]

Datasets:

- Synthetic *Trace* and *ECG5000* datasets¹:
 - o Randomly put noise for Data Augmentation
 - o Two concept drifts are inserted in each dataset

RQ1. Incremental learning with ISMAP

GCN-M

Incremental behavior

- Captured by Compression Ratio $= \frac{N_{import}}{N_{training}}$
- Possible to combine with other TS classifiers:
 - o Shapelet Transform [Lines et al., KDD'12]
 - o HIVE-COTE [Lines et al., ICDM'16]

Type	Name	Train/Test	Class	Length	IG	KW	$\mathbf{M}\mathbf{M}$	ISMAP(best)	Para. (Δ)	Comp. Ratio
Simulated	SyntheticControl	300/300	6	60	0.9433	0.9000	0.8133	0.7007	0.35	46.7%
Sensor	Trace	100/100	4	275	0.9800	0.9400	0.9200	1	0.5, 0.45	26.0%
	MoteStrain	20/1252	2	84	0.8251	0.8395	0.8395	0.9169	0.45	60.0%
	SonyAIBO.I	20/601	2	70	0.8453	0.7281	0.7521	0.9151	0.4	95.0%
	SonyAIBO.II	27/953	2	65	0.8457	-	-	0.8583	0.4	63.0%
	ItalyPower.	67/1029	2	24	0.8921	0.9096	0.8678	0.9466	0.45	25.4%
ECG	ECG5000	500/4500	5	140	0.7852	-	-	0.9109	0.4	9.4%
	ECGFiveDays	23/861	2	136	0.7747	0.8721	0.8432	0.9826	0.4	51.2%
	TwoLeadECG	23/1189	2	82	0.8507	0.7538	7657	0.9337	0.5	47.8%
Images	Symbols	25/995	6	398	0.7799	0.5568	0.5799	0.8113	0.35	96.0%
	Coffee	28/28	2	286	0.9643	0.8571	0.8671	0.9286	0.4	78.6%
	FaceFour	24/88	4	350	0.8409	0.4432	0.4205	0.9886	except 0.45	62.5%
	DiatomSize.	16/306	4	345	0.7222	0.6111	0.4608	0.8758	0.5	50.0%
Motion	GunPoint	50/150	2	150	0.8933	0.9400	0.9000	0.9733	0.45	42.0%

1. J. Lines, L. M. Davis, J. Hills, and A. Bagnall, "A shapelet transform for time series classification," in Proc. SIGKDD 2012 ItalyPowerD.

2. J. Lines, S. Taylor, and A. Bognall, "Hive-cote: The hierarchical vote callective of transformation-based ensembles for times classification," IEEE ICDM 2016 32

Sigmoid Loss Function O-1 Loss Function
TS Loss by Sigmoid
TS Loss by 0-1 Loss Func.

Dist. Threshold of Shapelet

1.00 1.25 1.50

0.50 0.75

Dist(TS, Shapelet)

0.25

Value Loss Δ

> -0.50 -0.25 0.00

RQ1. Incremental learning with ISMAP

GCN-M

 \circ Trade-off between Accuracy and Loss Threshold Δ

In theory

Loss threshold \nearrow , the efficiency \nearrow , the accuracy \searrow Ο

In practice

The highest accuracy falls in the range $\Delta \in [0.35, 0.45]$. 0

RQ2. Adaptive learning with ISMAP

Concept drift detection & Elastic caching mechanism¹

1. J. Zuo, K. Zeitouni, and Y. Taher, "ISETS: Incremental Shapelet Extraction from Time Series Stream", demo paper in ECML-PKDD'19

ISMAP - Conclusion

- Shapelet representation is natively interpretable for explaining the feature evolution and concept drift in the time series stream.
- Our proposal *ISMAP* extracts incremental and adaptive Shapelets from the time series stream
- Our proposed *elastic caching mechanism* handles the infinite time series stream.
- ISMAP is applicable in the scenarios where:
 - New TS instances enrich the learned concept
 - New TS instances may lead to Concept Drift

Github page
Outline

\circ Introduction

- \circ Background
 - Time series mining
 - Time series representation
- ISMAP: Dynamic Feature Learning on Time Series Stream
- SMATE: Semi-supervised Learning on Multivariate Time Series
- GCN-M: Geo-located Time Series Forecasting with Missing Values
- $\circ~$ Conclusion and perspectives

Problem statement & objectives

• Complex structure in multivariate time series (MTS)

- Temporal relationships
- \circ Inter-variable relationships
- Costly labeling on multivariate time series

Objectives

- Learn an appropriate MTS representation
 - The **temporal dependencies**: temporal dynamics
 - The **dynamic interaction**s between the variables: **spatial dynamics**

GCN-M

- Semi-supervised representation learning
 - Explore thoroughly the information in labeled and unlabeled samples

Related work – MTS representations

1. Combine features from each variable (i.e., 1-D series)

- Global features: 1NN-DTW_I [Yekta et al., DMKD'15]
- Shapelet features: Shapelet Ensemble [Cetin et al., SDM'15], M-Shapelet Discovery [Grabocka et al., KAIS'16]
- Motif features: WEASEL+MUSE [Schafer et al., AALTD'18], Global Discriminative Patterns [Nayak et al., SDM'18]
- Deep Representation features: Multi-Channels CNN [Zheng et al., WAIM'14]

GCN-M

- 2. Extract features directly from all variables
 - Global features: 1NN-DTW_D (1NN-DTW_A) [Yekta et al., DMKD'15]
 - Motif features: Symbolic Representation for MTS (SMTS) [Baydogan et al., DMKD'15]
 - Deep Representation features: Modified DNN approaches for Univariate TSC, e.g., LSTM-FCNs [Karim et al., ArXiv'19], InceptionTime [Fawaz et al., ArXiv'19], ROCKET [Dempster et al., ArXiv'19], etc.
- 3. Consider the interactions between the variables
 - Variable correlation: MLSTM-FCNs [Karim et al., Neural Networks'19]
 - Attention Mechanism: CA-SFCN [Hao et al. IJCAI'20]
 - 2D-CNN with 1D-CNN: MTEX-CNN [Assaf et al., ICDM'19], XCM [Fauvel et al., ArXiv'20]
 - Graph Pooling: MTPool [Xu et al., ArXiv'20]

All these approaches are fully supervised

Related work – Semi-supervised learning on TS

GCN-M

Semi-supervised Learning on UTS

- Self-training or Positive Unlabeled Learning
 - SSTSC [Wei and Keogh, KDD'06]
 - LCLC [Nguyen et al., IJCAI'11]
 - **DTW-D** [Chen et al., KDD'13], etc.
 - SSSL [Wang et al., PR'19]
- \circ Clustering based
 - SUCCESS [Marussy et al., ICAISC'13]
- Self-Supervised Learning
 - MTL [Javed et al., PAKDD'20]

Semi-supervised Learning on MTS

- USRL [Franceschi et al., NeurIPS'19]: contrastive learning
- **TapNet** [Zhang et al., AAAI'20]: attentional prototypical network

Most of the semi-supervised approaches are applied in Univariate Time Series

Proposal - SMATE

- Semi-supervised Spatio-Temporal Representation Learning on Multivariate Time Series¹
 - **Representation Learning** on $\mathbf{x} \in \mathbb{R}^{T \times M}$
 - Learn a low-dimensional representation $\mathbf{h} \in \mathbb{R}^{L \times D}$, where L < T, D < M
 - \circ **h** embeds the spatial and temporal features of **x**
 - \circ Semi-supervised regularization in the embedding space ${\cal H}$
 - Combine both labelled and unlabelled samples
 - Learn class-separable representations for downstream tasks, e.g., MTS classification

Spatio-Temporal Representation on MTS

GCN-M

Intuition

- System status at time t
 - \circ Local value $\mathbf{x}_t \in \mathbb{R}^M$
 - Neighbor values $s_t = [x_{t-m/2}, x_{t+m/2}]$
- Spatio-temporal features
 - \circ Temporal Dynamic $p(\mathbf{x}_{t'} | \mathbf{x}_t)$
 - \circ Spatial Dynamic $p(\mathbf{s}_{t'} | \mathbf{s}_t)$
 - Spatio-temporal dynamics $(x_t, s_t) \rightarrow (x_{t'}, s_{t'})$

The spatial and temporal structure in a MTS sample representing "Walking" activity (with 5 sensors) of the SHL¹ dataset.

1. H. Gjoreski, M. Ciliberto, L. Wang, F. J. O. Morales, S. Mekki, S. Valentin, D. Roggen. "The University of Sussex-Huawei Locomotion and Transportation Dataset for Multimodal Analytics with Mobile Devices." IEEE Access 6 (2018): 42592-4260

Spatio-Temporal Representation on MTS

GCN-M

○ Spatial Modelling Block (SMB)

- $\circ~$ Capture the spatial interaction at segment level
- o 1-d average Pooling: output the temporal status
- o 2 Fully Connected (FC) layers: interacting the temporal status in spatial direction
- o Output: the weighted MTS considering the spatial interaction

25/02/2023

SMATE - Model Structure

- Based on an asymmetric auto-encoder structure Ο
- Two channels for Spatio-temporal encoding Ο
 - GRU: $p(\mathbf{x}_{t'} | \mathbf{x}_t)$
 - SMB + Conv1D: $p(s_{t'} | s_t)$
- **Three-Step Regularization** Ο

SMATE - Three-Step Regularization

08/12/2021

SMATE - Joint Model Optimization

Regularization loss:

GCN-M

- With labelled samples
- With class centroids regularized by both labelled and unlabelled samples

$$L_{Reg}(\theta) = -\sum_{k} log W_{\theta}(y=k|\mathbf{x})$$

Reconstruction loss:

$$L_{R} = \mathbb{E}_{\mathbf{x}_{1:T}} \left[\sum_{t} \left\| \mathbf{x}_{t} - \tilde{\mathbf{x}}_{t} \right\|_{2} \right]$$

Objective function:

 $\min_{\theta} (L_R + \lambda L_{Reg})$

GCN-M

Experiments

Research Questions:

- \circ RQ1. Classification performance
- RQ2. Semi-supervised classification performance
- RQ3. Model efficiency
- \circ RQ4. Interpretation over the representation space

• RQ5. Performance of the Spatial Modeling Block

RQ1. Classification performance

• Evaluating SMATE for fully supervised representation learning

GCN-M

30 datasets from UEA Archive¹

13 baselines:

- Distance-based 1-NN classifier on non-normalized (*non-norm*) or normalized (*norm*) MTS
 - **1NN-ED** (non-norm & norm)
 - **1NN-DTW**_I (non-norm & norm); **1NN-DTW**_D (non-norm & norm)
 - **1NN-DTW_A** (*norm*) [Yekta et al., DMKD'15]
- o Bag-of-patterns classifier
 - WEASEL+MUSE [Schäfer et al., AALTD'18]
- Deep Learning-based classifier:
 - **SMATE_{NR}**: SMATE without supervised Regularization
 - MLSTM-FCNs [Karim et al., Neural Networks'19], USRL[Franceschi et al., NeurIPS'19], TapNet
 [Zhang et al., AAAI'20], CA-SFCN [Hao et al., IJCAI'20]

^{1.} www.timeseriesclassification.com

RQ1. Classification performance

Fully supervised representation learning Ο

SVM on the learned representation Ο

Performance Comparison for MTS classification over UEA MTS archive

	Dataset	SMATE	SMATE _{NR}	USRL	TapNet	MLSTM -FCN	CA-SFCN	WEASEL +MUSE	INN-ED	1NN- DTW _I	1NN- DTW _D	1NN-ED (norm)	1NN-DTW _I (norm)	1NN-DTW _D (norm)	1NN-DTW _A (norm)
[ArticularyWordR.	0.993	0.987	0.987	0.987	0.973	0.97	0.99	0.97	0.98	0.987	0.97	0.98	0.987	0.987
	AtrialFibrillation	0.133	0.133	0.133	0.333	0.267	0.333	0.333	0.267	0.267	0.2	0.267	0.267	0.22	0.267
	BasicMotions	1	1	1	1	0.95	1	1	0.675	1	0.975	0.676	1	0.975	1
	CharacterTrajectories	0.984	0.997	0.994	0.997	0.985	0.988	0.99	0.964	0.969	0.99	0.964	0.969	0.989	0.989
	Cricket	0.986	0.968	0.986	0.958	0.917	0.972	1	0.944	0.986	1	0.944	0.986	1	1
	DuckDuckGeese	N/A	N/A	0.675	0.575	0.675	N/A	0.575	0.275	0.55	0.6	0.275	0.55	0.6	0.567
- () -	EigenWorms	N/A	N/A	0.878	0.489	0.504	N/A	0.89	0.55	0.603	0.618	0.549	N/A	0.619	N/A
	Epilepsy	0.964	0.946	0.957	0.971	0.761	0.986	1	0.667	0.978	0.964	0.666	0.978	0.964	0.979
—	ERing	0.981	0.904	0.88	0.904	0.941	0.856	0.964	0.93	0.93	0.93	0.93	0.93	0.93	0.93
-	EthanolConcentration	0.399	0.373	0.236	0.323	0.373	0.323	0.43	0.293	0.304	0.323	0.293	N/A	0.323	0.316
SNAATE norforms the	FaceDetection	0.647	0.556	0.528	0.556	0.545	N/A	0.545	0.519	0.513	0.529	0.519	0.5	0.529	0.529
SIVIAL PERIORITIS LITE	FingerMovements	0.62	0.55	0.54	0.53	0.58	0.59	0.49	0.55	0.52	0.53	0.55	0.52	0.53	0.509
	HandMovementD.	0.554	0.365	0.27	0.378	0.365	0.324	0.365	0.279	0.306	0.231	0.278	0.306	0.231	0.224
best among all the	Handwriting	0.421	0.335	0.533	0.357	0.286	0.322	0.605	0.371	0.509	0.607	0.2	0.316	0.286	0.601
	Heartbeat	0.741	0.615	0.737	0.751	0.663	0.756	0.727	0.62	0.659	0.717	0.619	0.658	0.717	0.571
hacolines especially	InsectWingbeat	N/A	N/A	0.16	0.208	0.167	N/A	N/A	0.128	N/A	0.115	0.128	N/A	N/A	N/A
baselines, especially	JapaneseVowels	0.965	0.924	0.989	0.965	0.976	0.973	0.973	0.924	0.959	0.949	0.924	0.959	0.949	0.959
	Libras	0.849	0.834	0.867	0.85	0.856	0.89	0.878	0.833	0.894	0.872	0.833	0.894	0.87	0.879
on FEG/MEG data	LSST	0.582	0.568	0.558	0.568	0.373	0.674	0.59	0.456	0.575	0.551	0.456	0.575	0.551	0.551
	MotorImagery	0.59	0.59	0.54	0.59	0.51	N/A	0.51	0.39	N/A	0.5	0.51	N/A	0.5	0.5
	N/ATOPS	0.922	0.87	0.944	0.939	0.889	0.956	0.87	0.86	0.85	0.883	0.85	0.85	0.883	0.883
	PEMS-SF	0.803	0.744	0.688	0.751	0.699	N/A	N/A	0.705	0.734	0.711	0.705	0.734	0.711	0.73
	PenDigits	0.98	0.98	0.983	0.98	0.978	0.975	0.948	0.973	0.939	0.977	0.973	0.939	0.977	0.977
	Phoneme	0.177	0.19	0.246	0.175	0.11	0.19	0.19	0.104	0.151	0.151	0.104	0.151	0.151	0.151
	RacketSports	0.849	0.816	0.862	0.868	0.803	0.875	0.934	0.868	0.842	0.803	0.868	0.842	0.803	0.858
	SelfRegulationSCP1	0.887	0.874	0.771	0.739	0.874	0.734	0.71	0.771	0.765	0.775	0.771	0.765	0.775	0.786
	SelfRegulationSCP2	0.567	0.539	0.556	0.55	0.472	N/A	0.46	0.483	0.533	0.539	0.483	0.533	0.539	0.539
	SpokenArabicDigits	0.979	0.967	0.956	0.983	0.99	0.982	0.982	0.967	0.96	0.963	0.967	0.959	0.963	0.963
	StandWalkJump	0.533	0.4	0.4	0.4	0.067	0.2	0.333	0.2	0.333	0.2	0.2	0.333	0.2	0.333
	UWaveGestureLibrary	0.897	0.869	0.884	0.894	0.891	0.8	0.916	0.881	0.868	0.903	0.81	0.868	0.903	0.9
	Avg. Rank	3.85	6.19	5.9	4.73	7.33	5.45	4.66	9.3	7.43	6.37	9.37	7.88	6.83	6.21
	Wins (Ties)	11	3	6	5	2	5	8	0	2	2	0	2	1	2

RQ2. Semi-supervised classification performance

Four datasets on different domains from UEA Archive¹

- *ArticularyWordR*. (Motion)
- *Epilepsy* (Human Activity)
- Heartbeat (Audio Spectra)
- *SelfRegulationSCP1* (EEG/MEG)
- Baselines:
 - **1NN-DTW-D** [Chen et al., KDD'13]
 - \circ $\,$ Initially designed for UTS $\,$
 - \circ We adjust the distance measure with DTW_D which is designed for MTS
 - **USRL** [Franceschi et al., NeurIPS'19]: SVM on unsupervised representation
 - Semi-TapNets [Zhang et al., AAAI'20]: Learning unlabeled samples via Attentional Prototype Network
 - MTL [Javed et al., PAKDD'20]: Multi-task learning with self-supervised features from forecasting task

ISMAP SMATE

GCN-M

RQ2. Semi-supervised classification performance

- Semi-supervised representation learning Ο
 - SVM on the learned representation Ο

SMATE performs generally the best among all semi-supervised models, especially under weak supervision

GCN-M

RQ3. Model efficiency

Datasets & factors Ο

Factors	Dataset	(N, M, T)
Number of training epochs	ArticularyWordRecognition	(275, 9, 144)
TS length (T)	EthanolConcentration	(261, 3, 1751)
Number of TS instance (N)	LSST	(2459 , 6, 36)
Number of variables (M)	PEMS-SF	(267, 963 , 144)

• Compare with the Deep Learning models, tested on a single Tesla V100-32Go GPU

- MLSTM-FCNs [Karim et al., Neural Networks'19] Ο
- USRL [Franceschi et al., NeurIPS'19] Ο
- TapNet [Zhang et al., AAAI'20] Ο
- CA-SFCN [Hao et al. IJCAI'20] Ο

RQ3. Model efficiency

SMATE outperforms its 4 competitors in most cases

Exceptions:

 on very long MTS -> MLSTM-FCN faster
 on MTS with high number of variables -> TapNet faster

RQ4. Interpretation over the representation space

- Interpretable for the effect of the weak supervision
- Interpretable for the classification results

SMATE - Conclusion

- SMATE allows learning a validated Spatio-temporal representation on MTS
 - Spatial Modeling Block (SMB): dynamic spatial interactions
- SMATE allows an efficient representation learning and classification for MTS
- SMATE learns an interpretable representation for:
 - o The effect of the weak supervision
 - o The classification results
- SMATE allows weak supervision on the embedding space

Github page

• Limitations

• Efficiency problem on the TS that is extra-long & with extra huge variable numbers

Outline

\circ Introduction

- \circ Background
 - Time series mining
 - Time series representation
- ISMAP: Dynamic Feature Learning on Time Series Stream
- SMATE: Semi-supervised Learning on Multivariate Time Series
- GCN-M: Geo-located Time Series Forecasting with Missing Values
- $\circ~$ Conclusion and perspectives

Context & definitions

○ Time series in *Smart City* context:

 $\circ~$ Sensors with fixed spatial locations

Air quality & weather forecasting [Han et al., AAAI'21]

Traffic speed forecasting [Li et al., ICLR'18]

GCN-M

Context & definitions

\circ Geo-located time series (GTS)

- Sensor network $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$
 - $\circ \ \mathcal{V}:$ a set of geo-located nodes
 - $\circ~~\mathcal{E}$: a set of edges connecting the nodes

• Our application context: Traffic forecasting

- Sensor data $\mathcal{X} = \{\mathbf{X}_t\}_{t=1}^T \in \mathcal{R}^{N \times F \times T}$
 - **N** : number of spatial nodes
 - \circ F : number of features in each node
 - *T* : number of timstamps

Traffic speed data from PEMS-BAY dataset [Li et al., ICLR'18]

GCN-M

Problem statement

$\circ~$ Complex scenarios of missing values

- Temporal: long-range & short-range missing
- Spatial: partial & entire network missing
- \circ $\,$ Hinder the inter-relationship learning in GTS^1

1. LOPEZ, Andrés Ladino. Traffic state estimation and prediction in freeways and urban networks. 2018. Thèse de doctorat. Université Grenoble Alpes.

Objectives

- Complex missing values handling
 - On short & long temporal ranges
 - On partial & entire spatial network
- $\circ~$ Spatio-temporal modeling of the inter-relationships in GTS

GCN-M

- Temporal relationships
- Spatial relationships
- \circ One-step processing
 - Jointly modeling the Spatio-temporal patterns and complex missing values
- $\circ~$ Mainly designed for Traffic Forecasting task
 - \circ $\;$ Predicting future traffic situations based on the past $\;$

Related work

- Two-step processing
 - \circ $\:$ Isolate missing-value processing and traffic forecasting

GCN-M

- o e.g., imputation-based models [Yoon et al., NeurIPS'19]
- x The *general* techniques usually perform worse than the *task-specific* techniques
- One-step processing
 - \circ $\,$ Jointly model missing values and traffic forecasting $\,$
 - e.g., GRU-D [Che et al., Sci. Rep.'18], LSTM-M [Tian et al., Neurocomputing'18], SGMN [Cui et al., Transp. Res. Part C Emerg.'20], LGnet [Tang et al., AAAI'20]
 - x Less considerations on complex missing values and Spatio-temporal patterns
- $\circ~$ General traffic forecasting models
 - o Ignore missing values during model's optimization
 - e.g., DCRNN [Li et al., ICLR'18], STGCN [Yu et al., IJCAI'18], Graph-Wavenet [Wu et al., IJCAI'19],
 AGCRN [Bai et al., NeurIPS'20], GTS [Shang et al., ICLR'20], MTGNN [Wu et al., KDD'20]
 - x Ignoring missing values hinders the inter-relationship learning in GTS

Proposal - GCN-M

o Graph Convolutional Networks for Traffic Forecasting with Missing Values

- Multi-scale Memory Network: complex missing value modeling
- o L Spatio-Temporal Blocks (residual connections): Spatio-temporal pattern modeling
- Output Forecasting Module: forecasting results

Multi-scale Memory Network

- Enriched embeddings with local-global features
 - Local statistical features (Keys)
 - Global historical patterns (Memory components)
 - Combine local-global features: use Keys to query the Memory components

GCN-M

Spatio-Temporal Block

- Enriched embeddings with Spatio-temporal features
 - **Dynamic graph construction : dynamic spatial relationships**

GCN-M

- Temporal convolution: temporal features
- Dynamic graph convolution: re-weighting temporal features with spatial relationships

Output Forecasting Module

 $\circ~$ Combine features from each ST block

 $\circ \quad O = (\mathbf{h}_0 W_s^0 + b_s^0) \parallel \cdots \parallel (\mathbf{h}_i W_s^i + b_s^i) \parallel \cdots \parallel (\mathbf{h}_{l-1} W_s^{l-1} + b_s^{l-1}) \parallel (\mathcal{H}_l W_s^l + b_s^l)$

GCN-M

Project the concatenated features into the desired output dimension

$$\widehat{\mathbf{Y}} = W_{fc}^2 \left(W_{fc}^1 O + b_{fc}^1 \right) + b_{fc}^2 \in \mathcal{R}^{N \times T_p}$$

• Loss function: mean absolute error (MAE), $L = \frac{1}{NT_n} \sum_{n=1}^N \sum_{t=1}^{T_p} |\widehat{\mathbf{Y}}_t^n - \mathbf{Y}_t^n|$

Experiments

Research Questions:

$\circ~$ RQ1. Performance on complete datasets

• How well GCN-M performs on complete traffic datasets?

RQ2. Complex scenarios of missing values

• How successful is our model in forecasting traffic data considering the complex missing values?

GCN-M

\circ RQ3. Dynamic graph modeling

• How our method performs on dynamic graph modeling considering the missing values?

Experiments

○ Datasets

- \circ Use recent τ= 12 steps as input to predict the next T_p ∈ {3, 6, 12} steps
- Artificially mask raw data for simulating complex missing-value scenarios

Data	#Nodes	#Edges	Length	Sample Rate	Observations	Zero ratio
PEMS-BAY	325	2369	52 116	5 mins	16 937 179	0.0031%
METR-LA	207	1515	$34 \ 272$	5 mins	$6\ 519\ 002$	8.11%

Evaluation metrics

Baselines

- Six recent traffic forecasting models (Ignore missing values)
 - DCRNN [Li et al., ICLR'18], STGCN [Yu et al., IJCAI'18], Graph-Wavenet [Wu et al., IJCAI'19], AGCRN [Bai et al., NeurIPS'20], GTS [Shang et al., ICLR'20], MTGNN [Wu et al., KDD'20]
 - Five one-step processing models (Joint modeling)
 - (GRU), GRU-I, GRU-D [Che et al., Sci. Rep.'18], LSTM-M [Tian et al., Neurocomputing'18], LSTM-I, SGMN [Cui et al., Transp. Res. Part C Emerg.'20]

RQ1. Performance on complete datasets

GCN-M

PEMS-BAY	Hor	izon=1 (5	mins)	Hori	zon=3 (15)	i mins)	Hori	zon=6 (30	0 mins)	Horiz	n = 12 (6	60 mins)
Models	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE
DCRNN	0.96	1.63	1.81%	1.38	2.95	2.90%	1.74	3.97	3.90%	2.07	4.74	4.90%
STGCN	0.98	1.84	1.98%	1.44	2.88	3.16%	1.85	3.82	4.20%	2.21	4.52	5.09%
GraphWaveNet	0.91	1.56	1.72%	1.31	2.75	2.73%	1.65	3.75	3.74%	1.99	4.62	4.78%
MTGNN	0.87	1.57	1.70%	1.33	2.80	2.80%	1.65	3.75	3.70%	1.95	4.49	4.56%
AGCRN	0.95	1.81	1.94%	1.37	2.92	2.94%	1.69	3.87	3.82%	1.99	4.61	4.62%
GTS	0.91	1.64	1.77%	1.32	2.80	2.75%	1.63	3.74	3.63%	1.90	4.40	4.44%
GRU	1.29	2.46	2.54%	1.89	3.53	3.98%	2.27	4.24	5.02%	2.65	4.90	5.92%
GRU-I	1.30	2.57	2.57%	1.89	3.52	3.99%	2.26	4.22	4.99%	2.62	4.89	5.87%
GRU-D	5.40	9.25	13.83%	5.34	9.25	13.76%	5.42	9.26	13.85%	5.41	9.27	13.85%
LSTM-I	1.71	2.69	2.80%	1.97	3.45	4.08%	2.57	5.52	5.62%	2.74	5.00	6.21%
LSTM-M	1.35	2.31	2.71%	1.87	3.39	3.95%	2.33	4.33	5.17%	3.45	8.32	7.29%
SGMN	0.98	1.85	1.88%	1.63	3.40	3.32%	2.29	4.91	4.88%	3.31	6.86	7.32%
GCN-M (ours)	0.91	1.57	1.75%	1.33	2.72	2.76%	1.62	3.64	3.64%	1.95	4.40	4.61%

METR-LA	Hor	izon=1 (5	mins)	Hori	zon=3 (15)	5 mins)	Hori	zon=6 (30) mins)	Horiz	$x_{on=12}$ (6)	0 mins)
Models	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE
DCRNN	2.45	4.21	5.99%	2.77	5.38	7.30%	3.15	6.45	8.80%	3.60	7.60	10.50%
STGCN	2.58	4.32	6.22%	3.04	5.48	8.00%	3.60	6.51	9.97%	4.21	7.37	11.61%
GraphWaveNet	2.41	4.29	5.93%	2.68	5.14	6.87%	3.06	6.14	8.23%	3.52	7.25	9.77%
MTGNN	2.24	3.92	5.39%	2.68	5.16	6.86%	3.05	6.16	8.19%	3.50	7.24	9.83%
AGCRN	2.41	4.27	6.08%	2.86	5.54	7.66%	3.22	6.55	8.92%	3.58	7.45	10.24%
GTS	2.32	4.15	6.12%	2.72	5.42	7.11%	3.11	6.47	7.49%	3.52	7.49	10.07%
GRU	2.83	4.56	6.78%	3.48	5.80	9.02%	3.97	6.74	10.72%	4.65	7.86	13.00%
GRU-I	2.80	4.52	6.70%	3.49	5.83	9.05%	3.97	6.74	10.75%	4.60	7.88	12.80%
GRU-D	7.46	11.82	24.55%	7.43	11.85	24.62%	7.45	11.84	24.62%	7.47	11.86	24.68%
LSTM-I	2.86	4.57	6.77%	3.57	5.88	9.05%	4.10	6.85	10.94%	4.78	8.13	13.34%
LSTM-M	3.15	5.58	7.03%	3.46	5.74	8.75%	4.08	6.86	10.89%	4.63	7.83	12.92%
SGMN	3.11	6.02	7.01%	4.23	8.54	9.89%	5.46	10.88	13.01%	7.37	13.78	17.81%
GCN-M (ours)	2.34	3.89	5.88%	2.74	5.21	6.94%	3.12	6.18	8.25%	3.54	7.12	10.01%

• Comparable performance to recent traffic forecasting models

Clear advantage over one-step processing models

RQ2. Complex scenarios of missing values

GCN-M

P	EMS-BAY Models	${ m Miss} { m MAE}$	ing Rate = RMSE	= 10% MAPE	${ m Miss} { m MAE}$	ing Rate = RMSE	= 20% MAPE	${f Miss} {f MAE}$	ing Rate = RMSE	= 40% MAPE
ge missing	DCRNN STGCN GraphWaveNet MTGNN AGCRN GTS	$1.81 \\ 1.85 \\ 1.72 \\ 1.69 \\ 1.67 \\ 1.70$	$\begin{array}{c} 4.01 \\ 4.13 \\ 3.92 \\ 3.77 \\ 3.85 \\ 3.96 \end{array}$	$\begin{array}{c} 4.15\% \\ 4.21\% \\ 3.96\% \\ 3.78\% \\ 3.88\% \\ 3.92\% \end{array}$	$1.91 \\ 1.98 \\ 1.83 \\ 1.86 \\ 1.72 \\ 1.75$	$\begin{array}{c} 4.16 \\ 4.31 \\ 4.06 \\ 4.03 \\ 3.95 \\ 3.98 \end{array}$	$\begin{array}{c} 4.31\% \\ 4.56\% \\ 4.14\% \\ 4.11\% \\ 3.99\% \\ 3.89\% \end{array}$	2.02 2.11 1.89 1.98 1.80 1.79	$\begin{array}{c} 4.36 \\ 4.43 \\ 4.11 \\ 4.32 \\ 4.10 \\ 4.09 \end{array}$	$\begin{array}{c} 4.52\% \\ 4.68\% \\ 4.21\% \\ 4.44\% \\ 4.13\% \\ 4.09\% \end{array}$
Mix-ran	GRU GRU-I GRU-D LSTM-I LSTM-M SGMN GCN-M (ours)	2.71 2.31 8.90 2.46 3.86 7.41 1.65	4.88 4.30 13.71 4.51 7.06 10.91 <u>3.67</u>	6.03% 5.11% 20.03% 5.49% 8.93% 13.47% 3.69%	2.82 2.34 9.46 2.75 5.19 9.95 1.66	5.08 4.39 14.50 5.85 9.71 13.49 <u>3.72</u>	6.28% 5.18% 21.04% 6.02% 13.15% 17.56% 3.62%	3.05 2.40 10.21 3.39 5.27 13.10 1.69	5.43 4.50 15.19 9.15 9.74 16.96 <u>3.79</u>	6.82% 5.37% 22.44% 6.88% 13.29% 22.58% 3.83%

Ι	METR-LA	Miss	sing Rate	= 10%	Miss	ing Rate :	= 20%	Miss	ing Rate =	= 40%
	Models	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE
	DCRNN	3.33	6.69	9.53%	3.47	6.85	9.64%	3.56	6.95	9.78%
	STGCN	3.56	7.12	9.81%	3.64	7.28	10.33%	3.73	7.51	10.62%
50	GraphWaveNet	3.28	6.51	9.02%	3.43	6.78	9.52%	3.51	6.94	9.62%
sir	MTGNN	3.04	6.18	7.84%	3.14	6.72	9.07%	3.44	6.82	9.12%
nis	AGCRN	3.19	6.49	8.77%	3.21	6.56	8.95%	3.26	6.65	8.98%
ge I	GTS	3.12	6.51	8.61%	3.22	6.61	8.84%	3.34	6.72	8.86%
-ran	GRU	4.30	7.14	11.47%	4.35	7.31	11.68%	4.65	7.72	12.58%
ix.	GRU-I	4.05	6.83	10.94%	4.01	6.86	10.83%	4.11	6.97	10.98%
Σ	GRU-D	7.53	11.89	24.74%	7.71	12.32	25.43%	7.89	12.34	25.63%
	LSTM-I	4.15	6.94	11.06%	4.19	7.01	11.18%	4.30	7.18	11.35%
	LSTM-M	4.40	7.38	11.91%	5.14	8.77	14.92%	6.02	9.92	17.88%
	SGMN	9.33	14.16	20.47%	11.42	15.87	24.40%	13.84	18.13	28.97%
	GCN-M (ours)	3.08	6.34	8.59%	3.12	6.42	8.71%	3.23	6.50	8.76%

○ Mix-range missing

- Mask short & long range values on Temporal & Spatial axis
- Clear advantage over recent traffic forecasting models
- Clear advantage over one-step processing models

Background

RQ3. Dynamic Graph Modeling

 \circ Mix-range missing with missing rate = 40%

G	GCN-M	Ρ	Pre-defined		Lear	ned	Sta	itic/dyn	iamic 🛛	Cont	ruct dyn	amic		
Vä	ariants		graph	graph		ph		graphs			graphs with			
GC	N-M-obs							dynamic			raw observations			
GCI	N-M-adp		×		×			static			-			
GC	N-M-pre				>	(static	2		-			
GCN	N-M-com					2		static	;		-			
e	GCN-M		√		V	2		dynam	ic	enrich	ed embe	ddings		
8. 														
			Horiz	zon=3 ((15 mins))	Horizo	n=6 (30	mins)	Horiz	on=12 (60) mins)		
	Models		MAE	RMS	È MA	PE M.	AE	RMSÈ	MAPE	MAE	RMSE	MAPE		
IY	GCN-M-o	\mathbf{bs}	1.63	3.48	3.53	% 1.9)3	4.16	4.31%	2.25	4.81	5.10%		
B/	GCN-M-a	$^{\mathrm{dp}}$	1.53	3.11	3.14	% 1.8	32	3.93	4.03%	2.14	4.72	4.92%		
ST ST	GCN-M-p	re	1.61	3.27	3.21	% 1.8	37	4.05	4.11%	2.18	4.74	5.03%		
EN	GCN-M-co	om	1.54	3.13	3.11	% 1.7	79	3.92	3.97%	2.11	4.62	3.91%		
E.	GCN-M		1.45	3.03	3.09	1.	70	3.81	3.89%	2.06	4.64	4.86%		
A	GCN-M-o	bs	2.97	5.68	7.71	% 3.3	31	6.57	8.78%	3.71	7.54	10.07%		
ų.	GCN-M-a	dp	2.84	5.51	7.44	% 3.1	9	6.41	8.59%	3.68	7.34	9.96%		
IR	GCN-M-p	re	2.92	5.56	7.64	% 3.2	23	6.42	8.63%	3.72	7.42	10.04%		
Ē	GCN-M-c	om	2.84	5.52	7.45	% 3.1	17	6.4	8.63%	3.68	7.41	9.97%		
\mathbb{Z}	GCN-M		2.82	5.47	7.42	3.	16	6.38	8.55%	3.58	7.31	9.92%		

Model efficiency

Moderate efficiency performance

 $\circ~$ Performs better than DCRNN, but worse than others

GCN-M

$\circ\,$ Caused by

- Costly computations on the multi-scale memory networks (attention mechanism)
- Costly convolutions on dynamic graphs

Models	PEMS-BAY	METR-LA	Models	PEMS-BAY	METR-LA
DCRNN	468.22	178.23	GRU	3.65	2.45
STGCN	55.32	27.70	GRU-I	4.22	3.67
GraphWaveNet	118.77	48.16	GRU-D	7.82	5.43
MTGNN	86.20	38.70	LSTM-I	4.32	4.64
AGCRN	67.40	32.9	LSTM-M	8.12	5.76
GTS	191.4	62.3	SGMN	3.45	2.38
GCN-M (ours)	241.69	118.65		97953/8537 1. 5 00	2012/07/07/07/07/07/07/07/07/07/07/07/07/07/

Training time (second) per epoch (on a single Tesla V100-32Go GPU)

Conclusion & Perspectives

GCN-M - Conclusion

- GCN-M considers the complex scenarios of missing values (long-range & Ο short-range, partial & entire network missing) in traffic data
- GCN-M models the complex inter-relationships in traffic data Ο
- GCN-M jointly models the Spatio-temporal patterns and missing values in Ο one-step processing
- GCN-M is applicable not only to Traffic Forecasting but also to: Ο
 - Crowd flow forecasting
 - Weather and air pollution forecasting Ο
 - etc. Ο
Conclusion

- ISMAP: Dynamic Feature Learning on Time Series Stream
 - o Time series in streaming context
 - o Incremental, adaptive and interpretable Shapelet for online classification task

○ SMATE: Semi-supervised Learning on Multivariate Time Series

- o Multivariate time series in label-constraint context
- o Efficient, interpretable deep representations for semi-supervised classification task

• GCN-M: Geo-located Time Series Forecasting with Missing Values

- Traffic time series in Smart City context with data quality issues
- o Powerful deep representations for traffic forecasting task

Perspectives

• ISMAP: Dynamic Feature Learning on Time Series Stream

- Extend univariate time series (UTS) stream to multivariate time series (MTS) stream
- o Multi-dimensional Shapelet extraction on Matrix Profile

• SMATE: Semi-supervised Learning on Multivariate Time Series

- Apply our proposal in GCN-M (e.g., dynamic GCN) to improve the inter-relationship learning in MTS for classification tasks
- Optimize the semi-supervised framework via e.g., domain adaptation
- GCN-M: Geo-located Time Series Forecasting with Missing Values
 - Improve the efficiency of GCN-M via recent efficient attention mechanisms or graph tensor decomposition
 - o Validate GCN-M in wider contexts, e.g., air pollution forecasting

Publications

$_{\rm O}$ Journals

- **1.** J. Zuo, K. Zeitouni, Y. Taher, S. G. Rodriguez. "GCN-M: Graph Convolutional Networks for Traffic Forecasting with Missing Values". *Data Mining and Knowledge Discovery (DMKD), Springer (2022)*
- 2. H. El Hafyani, M. Abboud, J. Zuo, K. Zeitouni and Y. Taher. "Learning the Micro-environment from Rich Trajectories in the context of Mobile Crowd Sensing -Application to Air Quality Monitoring". *Geoinformatica, Springer (2022)*

o International Conferences

- **1.** J. Zuo, K. Zeitouni, Y. Taher. "SMATE: Semi-supervised Spatio-Temporal Representation Learning on Multivariate Time Series", *IEEE International Conference on Data Mining (ICDM'21)*
- 2. J. Zuo, K. Zeitouni, Y. Taher. "Incremental and Adaptive Feature Exploration over Time Series Stream", IEEE International Conference on Big Data (IEEE BigData'19)

o National Conference

1. J. Zuo, K. Zeitouni, Y. Taher. "Time Series meet Data Streams: Perspectives of the Interdisciplinary Collision and Applications". BDA 2019, Lyon, France

Workshops & Demos

- 1. H. El Hafyani, M. Abboud, J. Zuo, K. Zeitouni and Y. Taher. "Tell Me What Air You Sense/Breath, I Tell You Where You Are", International Symposium on Spatial and Temporal Databases 2021 (SSTD'21), demo.
- 2. M. Abboud, H. El Hafyani, J. Zuo, K. Zeitouni and Y. Taher. "Micro-environment Recognition in the context of Environmental Crowdsensing", in *Big Mobility Data Analytics with EDBT 2021 (BMDA'21)*
- **3.** J. Zuo, K. Zeitouni, and Y. Taher. "ISETS: Incremental Shapelet Extraction from Time Series Stream", ECML-PKDD'19, demo.
- 4. J. Zuo, K. Zeitouni, and Y. Taher. "Exploring interpretable features for large time series with SE4TeC.", EDBT 2019, demo.

Thank you for your attention.

RQ5: Performance of the Spatial Modeling Block

- 27 datasets from UEA archive in which SMATE has successfully executed
- SMATE with SMB Versus SMATE without SMB:
 - o [17 Wins | 8 Ties | 2 Losses]
- SMB Versus others:
 - Squeez-and-Excitation (SE) in MLSTM-FCNs [Karim et al., Neural Networks'19]
 - Random Dimension Permutation (**RDP**) in TapNet [Zhang et al., AAAI'20]

Dynamic graph construction

 \circ Input

• Enriched traffic embeddings: observed dynamic node features

GCN-M

- Pre-defined graph: introduced spatial information
- Static node embeddings: unobserved static node features

o Output

• Dynamic graphs at each timestamp

Temporal convolution

- Extract structural temporal features
 - $\circ \quad \mathbf{h}_i = \tanh(W_{\mathcal{F}} \star \mathcal{H}_i) \odot \sigma(W_{\mathcal{F}'} \star \mathcal{H}_i)$
 - $\circ W_{\mathcal{F}}, W_{\mathcal{F}'}$: learnable parameters of convolution filters
 - $\circ~$ Gating mechanism $\sigma(\cdot)$
 - \circ $\,$ a Sigmoid activation function which selects structural temporal features

GCN-M

Dynamic graph convolution

- $\circ~$ Aggregate spatial information with temporal features
 - $\circ \quad \mathcal{H}'_i(t) = \sum_{k=0}^K (A_i(t))^k \mathbf{h}_i(t) W_k \in \mathcal{R}^{N \times d}$
 - \circ K : diffusion step
 - $\circ A_i(t)$: adjacency matrix (i.e., graph) at time t, in the *i*-th ST block

GCN-M

 \circ W_k : learnable parameter matrix

Background

RQ2. Complex scenarios of missing values

PEMS-BAY		Missing Rate $= 10\%$			ing Rate :	= 20%	Missing Rate $= 40\%$		
Models	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE
DCRNN STGCN GraphWaveNet	$1.76 \\ 1.82 \\ 1.69$	$3.94 \\ 4.11 \\ 3.79$	$3.94\%\ 4.25\%\ 3.81\%$	$1.82 \\ 1.91 \\ 1.74$	$3.96 \\ 4.18 \\ 3.75$	$4.01\%\ 4.41\%\ 3.75\%$	$1.85 \\ 1.97 \\ 1.79$	$4.26 \\ 4.33 \\ 3.87$	$4.04\%\ 4.42\%\ 3.90\%$
MTGNN AGCRN GTS	1.58 1.65 1.65	3.42 3.81 3.86	3.33% 3.78% 3.74%	$1.72 \\ 1.66 \\ 1.65$	$3.78 \\ 3.81 \\ 3.86$	3.83% 3.79% 3.76%	1.83 1.72 1.69	4.03 3.96 3.92	3.94% 3.95% 3.86%
GRU GRU-I GRU-D LSTM-I LSTM-M SGMN GCN-M (ours)	$2.60 \\ 2.29 \\ 5.38 \\ 2.35 \\ 2.47 \\ 2.32 \\ 1.62$	$\begin{array}{c} 4.64 \\ 4.28 \\ 9.29 \\ 4.33 \\ 4.55 \\ 4.96 \\ 3.67 \end{array}$	5.75% 5.06% 13.84% 5.22% 5.50% 4.94% 3.60%	2.67 2.31 5.46 2.82 2.56 2.34 1.63	4.78 4.31 9.36 6.63 4.70 5.01 3.73	5.90% 5.09% 13.96% 6.05% 5.74% 5.00% 3.68%	$2.86 \\ 2.41 \\ 7.20 \\ 3.06 \\ 3.34 \\ 2.45 \\ 1.75$	5.10 4.47 11.58 7.47 7.09 5.20 3.81	6.37% 5.38% 16.91% 6.56% 7.68% 5.23% 3.90%
	EMS-BAY Models DCRNN STGCN GraphWaveNet MTGNN AGCRN GTS GRU GRU-I GRU-D LSTM-I LSTM-H SGMN GCN-M (ours)	EMS-BAY Models Miss MAE DCRNN 1.76 STGCN 1.82 GraphWaveNet 1.69 MTGNN 1.58 AGCRN 1.65 GTS 1.65 GRU 2.60 GRU-I 2.29 GRU-D 5.38 LSTM-I 2.35 LSTM-M 2.47 SGMN 2.32 GCN-M (ours) 1.62	EMS-BAY Models Missing Rate MAE RMSE DCRNN 1.76 3.94 STGCN 1.82 4.11 GraphWaveNet 1.69 3.79 MTGNN 1.58 3.42 AGCRN 1.65 3.81 GTS 1.65 3.86 GRU-I 2.29 4.28 GRU-D 5.38 9.29 LSTM-I 2.35 4.33 LSTM-M 2.47 4.55 SGMN 2.32 4.96 GCN-M (ours) 1.62 3.67	EMS-BAY ModelsMissing Rate $= 10\%$ MAEDCRNN STGCN GraphWaveNet 1.76 3.94 3.94% 1.82 LCRNN GraphWaveNet 1.76 3.94 3.94% 1.82 MTGNN AGCRN GTS 1.69 3.79 3.81% 1.65 GRU GRU-I 2.60 4.64 5.75% 5.38 GRU-D GRU-D 2.35 4.33 5.22% 2.47 LSTM-M SGMN 2.47 4.55 5.50% 2.32 GCN-M (ours) 1.62 3.67 3.60%	EMS-BAY ModelsMissing Rate $= 10\%$ MAEMissing RateDCRNN STGCN GraphWaveNet 1.76 1.82 3.94% 1.82 1.82 1.91 1.69 3.79 3.81% 1.74 MTGNN AGCRN GTS 1.65 1.65 3.81% 3.78% 1.66 1.65 3.86 3.74% 1.65 3.87% 1.65 GRU GRU-I GRU-D LSTM-I 2.29 4.28 2.60 4.64 5.75% 2.67 2.67 2.31 5.38 9.29 13.84% 5.46 2.31 5.38 2.22% 2.82 2.82 2.56 2.32 4.96 4.94% 2.34 GCN-M (ours) 1.62 3.67 3.60%	EMS-BAY Models Missing Rate MAE RMSE MAPE Missing Rate MAE RMSE DCRNN STGCN GraphWaveNet 1.76 3.94 3.94% 1.82 3.96 1.82 4.11 4.25% 1.91 4.18 GraphWaveNet 1.69 3.79 3.81% 1.74 3.75 MTGNN AGCRN 1.65 3.81 3.78% 1.66 3.81 I.65 3.81 3.78% 1.66 3.81 I.65 3.86 3.74% 1.65 3.86 GRU 2.60 4.64 5.75% 2.67 4.78 GRU-I 2.29 4.28 5.06% 2.31 4.31 GRU-D 5.38 9.29 13.84% 5.46 9.36 LSTM-I 2.35 4.33 5.22% 2.82 6.63 LSTM-M 2.47 4.55 5.50% 2.56 4.70 SGMN 1.62 3.67 3.60% 1.63 3.73	EMS-BAY ModelsMissing Rate $= 10\%$ MAEMissing Rate $= 20\%$ MAPEDCRNN STGCN GraphWaveNet 1.76 3.94 3.94% 1.82 3.96 4.01% MAPEDCRNN GraphWaveNet 1.69 3.79 3.81% 1.74 3.75 3.75% MTGNN AGCRN GTS 1.65 3.81 3.78% 1.66 3.81 3.79% GRU GRU-I 2.60 4.64 5.75% 2.67 4.78 5.90% GRU-D LSTM-I LSTM-M SGMN 2.35 4.33 5.22% 2.82 6.63 6.05% LSTM-M SGMN 2.47 4.55 5.50% 2.56 4.70 5.74% GCN-M (ours) 1.62 3.67 3.60% 1.63 3.73 3.68%	EMS-BAY ModelsMissing Rate $= 10\%$ MAEMissing Rate $= 20\%$ MAPEMissing Rate $= 20\%$ MAEMissing Rate $= 20\%$ MAPEMissing Rate $= 20\%$ MAPE </td <td>EMS-BAY Models Missing Rate MAE RMSE MAPE Missing Rate MAPE 20% MAE Missing Rate RMSE 20% MAE Missing Rate RMSE 20% MAE Massing Rate RMSE 20% MAE Massing Rate RMSE 20% MAE Massing Rate RMSE 20% MAE Massing Rate RMSE 20% 2</br></br></br></br></br></br></br></br></td>	EMS-BAY Models Missing Rate MAE RMSE MAPE Missing Rate MAPE 20% MAE Missing Rate RMSE 20%

METR-LA		Missing Rate $= 10\%$			Miss	ing Rate =	= 20%	Missing Rate $= 40\%$		
Models		MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE
ge missing	DCRNN STGCN GraphWaveNet MTGNN AGCRN GTS	3.31 3.53 3.28 2.98 3.19 3.08	6.61 7.08 6.60 6.03 6.47 6.40	9.47% 9.73% 9.11% 8.35% 8.81% 8.59%	3.44 3.59 3.36 3.19 3.24 3.14	6.80 7.25 6.74 6.44 6.60 6.52	9.57% 10.25% 9.50% 8.69% 9.01% 7.58%	3.50 3.66 3.45 3.26 3.25 3.12	$\begin{array}{c} 6.90 \\ 7.45 \\ 6.81 \\ 6.59 \\ 6.61 \\ 6.56 \end{array}$	9.68% 10.41% 9.57% 9.07% 9.19% 8.61%
Short-rang	GRU GRU-I GRU-D LSTM-I LSTM-M SGMN GCN-M (ours)	$\begin{array}{c} 4.20 \\ 4.02 \\ 7.50 \\ 4.12 \\ 4.10 \\ 5.54 \\ 3.17 \end{array}$	$7.09 \\ 6.83 \\ 11.87 \\ 6.89 \\ 6.92 \\ 10.93 \\ 6.33 $	$11.27\% \\ 10.89\% \\ 24.69\% \\ 11.04\% \\ 10.91\% \\ 13.17\% \\ 8.72\% \\$	$\begin{array}{c} 4.27 \\ 4.03 \\ 7.45 \\ 4.18 \\ 4.15 \\ 5.61 \\ 3.23 \end{array}$	$7.16 \\ 6.88 \\ 11.86 \\ 6.98 \\ 6.98 \\ 10.99 \\ 6.47 $	$11.42\% \\ 10.83\% \\ 24.66\% \\ 11.10\% \\ 11.03\% \\ 13.35\% \\ \underline{8.99\%}$	$\begin{array}{c} 4.45 \\ 4.09 \\ 7.53 \\ 4.21 \\ 4.26 \\ 5.81 \\ \underline{3.26} \end{array}$	7.41 6.91 11.91 7.08 7.18 11.18 6.35	$11.94\% \\ 10.88\% \\ 24.76\% \\ 11.26\% \\ 11.44\% \\ 13.83\% \\ \underline{8.98\%}$

○ Short-range missing

• **Comparable** performance to

- recent traffic forecasting models
- Clear advantage over one-step

processing models

Background

RQ2. Complex scenarios of missing values

PEMS-BAY		Missing Rate $= 10\%$			Missing Rate $= 20\%$			Missing Rate $= 40\%$		
	Models	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE
	DCRNN	1.83	4.07	4.22%	1.96	4.22	4.42%	2.07	4.45	4.67%
	STGCN	1.92	4.22	4.42%	2.03	4.37	4.72%	2.14	4.52	4.76%
190	GraphWaveNet	1.74	3.96	4.03%	1.87	4.09	4.18%	1.94	4.21	4.33%
ssi	MTGNN	1.65	3.68	3.72%	1.89	4.01	4.17%	2.01	4.42	4.61%
mi.	AGCRN	1.72	3.78	3.94%	1.84	4.11	4.13%	1.90	4.18	4.31%
ige i	GTS	1.68	3.86	3.91%	1.78	4.12	4.97%	1.88	4.17	4.22%
-rar	GRU	2.93	5.12	6.32%	3.06	5.31	6.63%	3.35	5.78	7.03%
gu	GRU-I	2.52	4.51	5.33%	2.53	4.57	5.73%	2.71	4.82	5.51%
Гo	GRU-D	9.33	14.51	22.31%	9.89	13.94	22.86%	11.07	15.88	23.13%
10 - 25	LSTM-I	2.65	4.65	5.88%	3.13	6.35	6.82%	3.62	9.53	7.12%
	LSTM-M	3.93	7.25	9.17%	5.45	10.06	13.67%	5.57	10.12	14.59%
	SGMN	8.86	12.57	14.54%	11.45	14.56	18.31%	14.62	17.23	23.13%
	GCN-M (ours)	1.70	3.75	3.74%	1.73	3.88	3.92%	1.79	4.07	4.14%

METR-LA		Missing Rate $= 10\%$			Missing Rate $= 20\%$			Missing Rate $= 40\%$		
Models		MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE
	DCRNN	3.46	6.78	9.62%	3.54	6.96	9.75%	3.62	7.02	9.89%
	STGCN	3.71	7.20	9.91%	3.76	7.39	10.42%	3.88	7.66	10.67%
100	GraphWaveNet	3.43	6.64	9.07%	3.57	6.92	9.62%	3.61	7.03	10.71%
iise	MTGNN	3.19	6.32	8.48%	3.39	6.85	9.21%	3.50	6.95	9.74%
mi.	AGCRN	3.31	6.54	8.94%	3.33	6.68	8.98%	3.33	6.78	9.45%
-range 1	GTS	3.25	6.61	8.93%	3.29	6.74	8.85%	3.46	6.86	9.37%
	GRU	4.37	7.28	12.54%	4.47	7.44	11.72%	4.76	7.81	12.71%
ng	GRU-I	4.20	6.91	11.78%	4.09	6.97	15.42%	4.21	7.03	11.43%
Lo	GRU-D	7.59	11.94	24.72%	7.82	12.46	25.67%	7.96	12.45	26.12%
	LSTM-I	4.20	7.09	11.08%	4.25	7.12	11.32%	4.36	7.32	11.56%
	LSTM-M	4.53	7.47	11.88%	5.21	8.84	15.34%	6.08	10.02	18.13%
	SGMN	9.47	14.30	20.72%	11.49	16.01	24.55%	13.97	18.24	29.10%
	GCN-M (ours)	3.18	6.39	8.71%	3.23	6.56	8.78%	3.27	6.68	9.12%

○ Long-range missing

- Clear advantage over recent
- traffic forecasting models for a high missing rate
- Clear advantage over one-step processing models