
SMATE: Semi-Supervised Spatio-Temporal Representation
Learning on Multivariate Time Series

Jingwei Zuo, Karine Zeitouni and Yehia Taher
DAVID Lab, University of Versailles, Université Paris-Saclay, Versailles, France

Email: {jingwei.zuo, karine.zeitouni, yehia.taher}@uvsq.fr

Abstract—Learning from Multivariate Time Series (MTS) has
attracted widespread attention in recent years. In particular, label
shortage is a practical challenge for the classification task on
MTS, considering its complex dimensional and sequential data
structure. Unlike self-training and positive unlabeled learning
that rely on distance-based classifiers, in this paper, we propose
SMATE, a novel semi-supervised model for learning the inter-
pretable Spatio-Temporal representation from weakly labeled
MTS. We validate empirically the learned representation on 30
public datasets from the UEA MTS archive. We compare it with
13 state-of-the-art baseline methods for fully supervised tasks
and four baselines for semi-supervised tasks. The results show
the reliability and efficiency of our proposed method.

Index Terms—Neural Networks, Multivariate Time Series,
Semi-supervised Learning, Representation Learning

I. INTRODUCTION

Most Multivariate Time Series (MTS) data, such as sensor
readings, are labeled during the data collection process. The
post-labeling of MTS is much more costly than classic data
(e.g., image, text, etc.) due to the low interpretability over the
real-valued sequence, leading to a considerable constraint for
MTS classification in real-life scenarios.

Weakly supervised learning becomes an alternative option
for the fully supervised algorithm by learning from the unla-
beled samples. The previous studies on weak-label Time Series
(TS) learning are usually based on self-training [1] or Positive
Unlabeled Learning [2] with a carefully designed distance
measure [3] or stopping criterion [4] to learn the pseudo-labels.
Besides, they mostly focus on the Univariate Time Series
(UTS) with the One-Nearest-Neighbor (1NN) classifier on raw
data space, which is widely outpaced by today’s advanced
approaches [5], such as Deep Neural Networks (DNNs) [6] or
ensemble methods [7].

From Univariate Time Series (UTS) to Multivariate Time
Series (MTS), traditional methods usually combine the com-
pact and effective features from different variables, such as
Shapelet Ensemble [8]–[10], global discriminative patterns
[11], or bag-of-patterns [12], [13]. However, the predefined
features usually fail to capture MTS essentials: the temporal
dependency and the interactions of multiple variables (i.e.,
spatial interactions, we use the term spatial in this paper for
the variable axis). Recently, some deep learning-based meth-
ods were proposed to capture the MTS features with various
network structures [14]–[17], showing promising performance
on MTS classification tasks. However, the above-mentioned

methods are mostly fully supervised, and rarely consider the
label shortage issue when building the MTS classifier.

The recent research turns to Representation Learning [18]
when handling weakly labeled MTS, which allows learning
low dimensional embeddings in an unsupervised manner, such
as using triplet loss [19] to form the embedding space, then
even an SVM classifier is powerful enough on the learned
representation [20]. However, existing techniques suffer from
three major issues. First, the interactions between the MTS
variables are generally computed on the entire 1-D series,
ignoring the fact that the local spatial interactions at the sub-
sequence level may evolve in the dynamic sequence, that is
spatial dynamics. Second, the representation learned in a
pure unsupervised manner depends mostly on the loss function
selection. As no label information is utilized to learn the
representation [19], there is a risk that it deviates from the
true features, thus affecting the classifier performance. Third,
they rather employ deep learning as a blind box and do not
focus on the interpretability of the learned representation.

Therefore, to handle both the MTS complex structure
and the label shortage problem, we propose SMATE,
Semi-supervised Spatio-temporal representation learning on
MultivAriate Time SEries. The auto-encoder based structure
allows mapping the MTS samples from raw features space X
to low dimensional embedding space H. A Spatial Modeling
Block combined with a multi-layer convolutional network
captures the spatial dynamics, whereas a GRU-based structure
extracts the temporal dynamic features. Thereby, SMATE is
capable of compressing the essential Spatio-temporal charac-
teristics of MTS samples into low-dimensional embeddings.
On top of this embedding space H, we propose a semi-
supervised three-step regularization process to bring the model
to learn class-separable representations, where both the labeled
and unlabeled samples contribute to the model’s optimization.
This regularization process comes with the capability of visu-
alization at each step, making SMATE interpretable.

We summarize the paper’s main contributions as follows:
• Spatio-temporal dynamic features in MTS: We claim

and demonstrate that the temporal dependency and the
evolution of the spatial interactions (spatial dynamics)
are important for building a reliable MTS embedding.

• Weak supervision on learning representations: With
limited labeled data, SMATE can learn reliable class-
separable MTS representations for downstream tasks,
such as MTS classification (MTSC).

• Interpretable MTS embedding learning: SMATE al-
lows for visual interpretability, not only from the class-
separable representations but also in each step of the
semi-supervised regularization process.

• Extensive experiments on the MTS datasets: The
experiments are carried out on various MTS datasets from
different application domains. The detailed evaluation
with 13 supervised baselines and four semi-supervised
work is provided, which shows the effectiveness and the
efficiency of SMATE over the state of the art.

The rest of this paper starts with a review of the most related
work. Then, we formulate the problems of the paper. Later,
we present in detail our proposal SMATE, which is followed
by the experiments on real-life datasets and the conclusion.

II. RELATED WORK

We begin by discussing the related work on learning MTS
representation with the main extension to MTS Classification
(MTSC) tasks. Then, we briefly review the previous work
on semi-supervised Time Series learning. Table I shows the
comparison of the methods for learning MTS representation.

A. Multivariate Time Series Representation Learning

Firstly, we give two primary definitions.
Definition 1 (univariate time series): A univariate time

series x ∈ RT is a sequence of real-valued numbers: x=(x1,
x2, ..., xi, ..., xT), where T is the sequence length.

Definition 2 (multivariate time series): A multivariate time
series x ∈ RT×M is a sequence of real-valued vectors: x=(x1,
x2, ..., xi, ..., xT), where xi ∈ RM , M is the variable numbers.

A natural way to learn MTS representation is to extend
the representation approaches developed earlier on Univariate
Time Series (UTS) [21]. This is the case in [22] where
the authors further explored Singular Value Decomposition
(SVD) with multi-view learning to find the consistency and
interactions between variables. Similarly, [8] [9] combine
Shapelet representation from different variables to build an
ensemble-like learner. Symbolic Representation for Multi-
variate Time Series (SMTS) [12] adopts the Bag-of-Patterns
concept, considering all variables simultaneously and con-
structs a code-book to model the variable relations. Finally,
WEASEL+MUSE [13] extend WEASEL [23] from UTS to
MTS by creating a histogram of feature counts to capture the
local and global changes in relationships between variables.

Different from the interpretable feature-based representa-
tions, various deep learning models are proposed to cap-
ture the variable (i.e., spatial) interactions in MTS. Multi-
Channels Deep Convolutional Neural Networks (MC-DCNN)
[15] extract firstly 1D-CNN features from each variable,
then combine them with a Fully Connected (FC) Layer.
Whereas the authors in [24] abandon the combination strat-
egy but apply directly 1D-CNN to all variables. The 2D-
CNN features with the cross-attention mechanism in CA-
SFCN [25] enhanced the dependencies captured by 1D-CNN
on both temporal and spatial axes. Besides, the recurrent
models are widely applied to sequential data. A modified

Gated Recurrent Unit (GRU) described in [16] models MTS
with missing values, where each multivariate step is mem-
orized into state units, then the recurrent structure captures
the temporal dependencies. Another group of works [26],
[27] adopt Graph Neural Networks (GNNs) to model the
spatial interactions. However, they are generally designed for
forecasting tasks (e.g., traffic forecasting), and most rely on
external information (e.g., the road networks) between the
variables. Last but not least, the hybrid LSTM-CNN structure
is capable of extracting both local and long-term features.
Various work such as the Squeeze-and-Excitation block in
MLSTM-FCN [14] or the multi-view learning-like module in
TapNet [28], enhanced the hybrid structure via modeling the
spatial interactions. However, the interactions are generally
computed at the sequence level, ignoring the fact that the
local spatial interactions at the sub-sequence level may evolve
in the dynamic sequence, i.e., spatial dynamics. Moreover,
they are all fully supervised, requiring huge labels during the
training process. Also, the learned representations are result-
oriented (e.g., pursuing higher accuracy), with less focus on
the interpretability, considered by the data mining community.

TABLE I: Existing methods for learning MTS Representation

SM
T

S

M
U

SE

Sh
ap

el
et

U
SR

L

Ta
pN

et

M
L

ST
M

-F
C

N

C
A

-S
FC

N

1N
N

-D
T

W

SM
AT

E

Temporal Dynamics - - - X X X X - X
Spatial Dynamics - - - - - - X - X
Interpretable Representation X X X - X - - - X
Label Shortage - - - X X - - X X

B. Semi-supervised Learning on Time Series

The pioneering work [1], [3] on Semi-supervised TS Learn-
ing are based on self-training or Positive Unlabeled Learning
[2] with the Nearest-Neighbor (1NN) classifier and a carefully
designed distance, such as DTW [1] or DTW-D [3], and
optimized stopping criterion [4] for importing the pseudo-
labels. Those work are followed by [29], [30] for wider
contexts. Though not mentioned in their papers, the self-
training framework is extensible from the UTS to the MTS
setting by using an adapted distance, such as DTWI [31],
DTWD [31] or DTWA [32]. However, under more complex
scenarios nowadays, such as 30 UEA MTS datasets [33]
collected from different domains, the distance-based classifiers
show limited performance and are rather used as baselines by
recent studies [5].

Learning meaningful MTS representations [18] in a weakly
supervised setting draws much attention recently. Unsuper-
vised Scalable Representation Learning (USRL) described in
[19] combines causal dilated convolutions with triplet loss for
contrastive learning. On the one hand, it learns better UTS
representation than the traditional supervised CNNs [6]. On the
other hand, a single SVM on the learned MTS representation
offers higher accuracy than a DTWD-based classifier [31].
Similarly, authors in [30] adopt Multi-Task Learning (MTL)
to learn the self-supervised UTS features from an auxiliary
forecasting task. The recent work Semi-TapNet [28] proposes

an Attentional Prototype Network to learn from the unlabeled
samples. However, the above-mentioned approaches do not
explore thoroughly both the labeled samples and the Spatio-
temporal dynamics in MTS.

III. PROBLEM FORMULATION

In this section, we formulate firstly the Spatio-temporal
dynamics learning problem in MTS. Then, we give a for-
mal definition of a semi-supervised classification problem for
MTS. Table II summarizes the notations used in the paper.

A. Spatio-temporal Representation for MTS

TABLE II: Notation

Notation Description
D,Dl,Du dataset, labeled portion, unlabeled portion
T , M , N MTS length, variable numbers, dataset size
L,D embedding length, embedding dimension size
m,P temporal window size, embedding pool size
x, h MTS instance, latent embedding
s variable/spatial interaction
θ general parameters to be optimized

The Spatio-temporal modeling of MTS requires considering
both the temporal dependency p(xt′ |xt) (t′ > t) and the spatial
interactions between the variables. Previous studies [14], [28]
usually consider the spatial interactions at the sequence level:
s = {xi on xj} ∈ RM , where xi, xj ∈ RT×1, on indicates the
interactions between the variables. However, the local spatial
interactions at the subsequence level st = {xit−m/2,t+m/2 on
xjt−m/2,t+m/2} ∈ R

M may evolve in the dynamic sequence,
where m is the window size. To illustrate, given the system
status at time t in MTS, it is not only decided by the local
value xt ∈ RM given a temporal status, but also by its
neighbor values

[
xt−m/2 : xt+m/2

]
∈ RM×m, which brings

a spatial correlation matrix on temporal neighbors and spatial
variables given a spatial status st ∈ RM . Unlike the work
such as DCRNN [27] relying on external information (e.g.,
the road networks) to model the spatial dependency between
the variables, we aim at exploring the inherent spatial/variable
interactions only on the MTS data.

Therefore, given a sample x ∈ RT×M in raw space X , the
Spatio-temporal representation learning for MTS is to learn
a low-dimensional representation h ∈ RL×D on embedding
spaceH, integrating both temporal dynamic p(xt′ |xt) and spa-
tial dynamic p(st′ |st). The item dynamic refers to the unstable
system status within the evolving multivariate sequential data.

B. Semi-Supervised Learning on MTS
Definition 3 (weak-label MTS dataset): A weakly labeled

MTS dataset D = {Dl,Du} contains both labeled and unla-
beled MTS samples:

Dl = {xi, yi}N∗ri=1 , Du = {x̂i}N∗(1−r)
i=1

where r (0 ≤ r ≤ 1) indicates the ratio of the labeled samples
in D of size N, yi is the annotation of the labeled instance xi.

The semi-supervised MTS learning aims at training a
classifier to predict successfully the label of a testing MTS
sample, adopting the supervised training from Dl and further
unsupervised adjustment/optimization from Du.

IV. PROPOSAL: SMATE

In this section, we introduce SMATE, which captures the
essential characteristics of Multivariate Time Series (MTS) and
allows learning an interpretable representation space in a semi-
supervised manner. This section is organized as follows. First,
we introduce the global model structure of SMATE. Then,
we describe how the Spatio-temporal representation is learned
from the raw MTS data space. Finally, we give the joint model
optimization, which coordinates the weak supervision and the
embedding learned via a three-step regularization process.

A. Global Structure of SMATE

SMATE is based on an asymmetric auto-encoder structure,
integrating three key components: Spatio-temporal dynamic
encoder, sequential decoder, and semi-supervised three-step
regularization of the embedding space.

Given the fact that extracting features from a high-
dimensional space generally requires additional attention com-
pared to restoring data from a low-dimensional space [18], the
encoding and decoding process in SMATE adopts different
weight matrix (i.e., asymmetric auto-encoder) to capture the
inner structure of MTS data. Although recent work [34] does
represent the temporal dynamics of MTS via a sequence to
sequence (seq2seq) model, they do not encompass the complex
Spatio-temporal structure of MTS. As shown in Figure 1,
SMATE adopts a two-channel encoder exploring both spatial
and temporal dynamics and embeds the input MTS into a
low-dimensional representation space, where the embedded
samples are sparsely distributed with the reconstruction-based
optimization. On the unsupervised embedding space, a three-
step regularization is applied to learn class-separable embed-
dings. The class centroids are regularized by labeled and
unlabeled samples, showing interpretability over the represen-
tation space. Finally, the model is jointly optimized by the
reconstruction objective and the regularization objective.

B. Spatial Modeling Block (SMB)

Firstly, we introduce a novel module, Spatial Modeling
Block (SMB), to capture the spatial interactions at subse-
quence levels. As shown in Figure 2, SMB takes as input
an MTS representation h = {hi}Ti=1 ∈ RT×d (d = M for
the first block in spatial encoding channel), followed by a
one-dimensional average pooling layer on each variable hj ∈
RT×1, encoding the temporal neighbors into the horizontal
system status sH(i)=avg(

[
hi−m/2 : hi+m/2

]
), where i is the

time tick, m is the window size. Then the Fully Connected
(FC) layers allow firstly the interaction of the horizontal sys-
tem status sH in the vertical direction via a low-dimensional
compression sV ∈ RT×d

′
, then remapping it to the initial

data space to decide the spatial interaction weights at each
one-dimensional segment. We define the spatial interactions
s = {si}Ti=1, where si ∈ Rd, representing the interaction
weights for the vector hi ∈ Rd. The output of SMB is
described by h′=h � s, with the calibrated weights for each
1-D TS segment, where � is the element-wise multiplication.

FC
 L

ay
er

G
R

U

FC
 L

ay
er

C
on

v1
D

BN
+R

eL
U

Sp
at

ia
l M

od
el

lin
g

Bl
oc

k

G
R

U

G
R

U

C
on

v1
D

BN
+R

eL
U

Sp
at

ia
l M

od
el

lin
g

Bl
oc

k

C
on

v1
D

BN
+R

eL
U

Sp
at

ia
l M

od
el

lin
g

Bl
oc

k

C
on

ca
te

na
te

1-
d

Po
ol

in
g

1-
d

Po
ol

in
g

U
pS

am
pi

ng
1D

G
R

U

G
R

U

G
R

U

Regularized
Embedding

C1

C2

C3

Class centroid
Labeled sample
Unlabeled sample

Unsupervised
Embedding

Unlabeled sample
Inherent classes

Three-Step Regularization

Reconstruction Loss

Spatio-Temporal Encoding

Decoding

Input MTS
% ∈ ℝ4×2

Reconstructed MTS
M% ∈ ℝ4×2

Fig. 1: Model Structure of SMATE

ℎ ∈ ℝ!×#

FC
 L

ay
er

Po
ol

in
g

Po
ol

in
g

Po
ol

in
g

Po
ol

in
g

FC
 L

ay
er

Spatial
Interactions

window size m

ℎ′ ∈ ℝ!×#
ℎ

𝑠

…

ℎ$

ℎ%

ℎ#

ℎ&

…

𝑠! ∈ ℝ"×$
!

𝑠% ∈ ℝ"×$ 𝑠 ∈ ℝ"×$

Fig. 2: The Spatial Modeling Block (SMB)

C. Spatio-Temporal Encoding on MTS

Given x ∈ RT×M , the low-dimensional representation
h ∈ RL×D embeds the Spatio-temporal features of x by a
neural network-based function fθ(x). The low-dimensional
embedding brings dramatic improvement on both the effi-
ciency and accuracy for classification tasks [28], owning to
the fact that the classifier is not distracted by the redundant
information in raw data.

As shown in Figure 1, we adopt a two-channel structure to
encode the spatial and temporal features in MTS, respectively.
For the temporal channel, among different variants of the
recurrent neural networks (RNN), we specifically consider
Gated Recurrent Units (GRUs) [16] that mitigate the vanishing
gradient problem. An update gate zt and a reset gate rt control
the hidden state ht ∈ Rdg with the observation xt ∈ RM and
the previous hidden state ht−1 ∈ Rdg , where dg is the output
dimension of GRUs. The update functions are as follows:

rt = σ(Wrxt + Urht−1 + br) (1)
zt = σ(Wzxt + Uzht−1 + bz) (2)

ht = (1−zt)�ht−1+zt�tanh(Whxt+Uh(ht−1�rt)+bh) (3)

where Wx, Ux, bx (x ∈ [r, z, h]) are model parameters, σ is
the sigmoid function, � is the element-wise multiplication.
Three GRUs are cascaded with a 1-D pooling layer to output
h(T) ∈ RL×dg , where L=T/P , P is the pool/sampling size1.

1Note that the pool/window size m in SMB and P are different parameters.

For the spatial channel, we define the convolutional module:

h′(l) = SMB(h(l)) (4)

h(l + 1) = ReLU(BN(W ⊗ h′(l) + b) (5)

where l (0 ≤ l < 3) is the module number, h(0)=x ∈ RT×M ,
h(l) ∈ RT×dc , dc is the filter number, W is the 1-D
convolutional kernel of size m, ⊗ is the convolution operator.
Within each of the three modules, the SMB firstly calibrates
the interaction weights for each 1-D segment and outputs
h′ ∈ RT×d. Then a 1-D convolutional layer concatenated with
Batch Normalization [35] and Rectified Linear Units (ReLU)
[36] is deployed. The 1-D kernels match with the window
size m in their neighboring SMB, as the convolution product
W ⊗

[
h′i−m/2 : h′i+m/2

]
requires considering the spatial inter-

actions captured by SMB within the same interval. Similar to
the temporal channel, a 1-D pooling layer is applied after the
last convolutional block to output h(S) ∈ RL×dc . Finally, we
output the combined spatial and temporal features hconcat =
concat(h(T), h(S)) ∈ RL×(dg+dc) and apply two FC layers
to get the Spatio-temporal embedding h ∈ RL×D. The matrix
representation allows the maximal preservation of the Spatio-
temporal features and facilitating the MTS restoration. The
detailed parameter settings can be found in Section V-A2.

D. Joint Model Optimization

As shown in Figure 1, since the representation learned
via an autoencoder-based structure generally has a sparse
distribution of class-specific samples [18], the unsupervised
training derived from the reconstruction objective does not
consider thoroughly the inner relation between class-specific
samples but focus on the restoration performance from the
embeddings. To address the issue, we propose a joint model
optimization that integrates the temporal reconstruction and
the three-step regularization objectives. Specifically, the joint
optimization combines both the labeled and unlabeled samples
to learn the class-specific clusters on the embedding space.

Firstly, we define the temporal reconstruction loss as:

LR =
∑

t
‖xt − x̃t‖2 (6)

where xt, x̃t ∈ RM , corresponding to the observations in
the raw and reconstructed MTS instances x and x̃.

Then, we introduce the three-step regularization combin-
ing both labeled and unlabeled samples to foster the model
adaptation of class-separable embeddings. The regularization
approaches the embeddings within the class-specific clusters
to the virtual class centroids, which are trained progressively.
Step 1 -Supervised Centroids Initialization: The class cen-
troids are initialized by the class-specific embeddings. Given
the labeled training set Dl = {Xk}Kk=1 where K is the class
number, Xk ∈ RNk×T×M is a sample collection of class k,
Nk is the sample number of class k. Then the embedding set
Hk=fθ(Xk) ∈ RNk×L×D initializes the class centroid ck by:

ck = mean(Hk), ck ∈ RL×D (7)

Step 2 -Supervised Centroids Adjustment: Once the cen-
troids are initialized, we can make the supervised adjustment
since the distance-based class probability allows to assess the
contribution of individual samples on the centroid’s decision.
In other words, the centroid ck is affected by larger contri-
bution weights brought by nearby samples of class k. Let
xki ∈ RT×M be a time series of class k, we define the weight
of xki to ck as the inverse Euclidean Distance (ED) between
the embedding hki = fθ(x

k
i) ∈ RL×D and the centroid ck:

Wk,i = 1− ED(hki , ck)∑K
j=1ED(hki , cj)

(8)

Then the class centroid ck can be adjusted accordingly by the
labeled samples within the class-specific cluster:

ck =
∑Nk

i=1
Wk,i · hki , hki ∈ Hk (9)

Step 3 -Unsupervised Centroids Adjustment: Given the
unlabeled samples Du = {x̂i}N∗(1−r)i=1 , where r is the labeled
data ratio. Apart from the optimization from the reconstruction
objective, the unlabeled sample x̂i is capable of adjusting the
centroid ck via the propagated label from the distance-based
class probability defined as:

p̂θ(y = k|x̂i) = 1− ED(fθ(x̂i), ck)∑K
j=1ED(fθ(x̂i), cj)

(10)

The unlabeled sample x̂i will be then integrated into the class-
specific cluster with the highest probability. We can further
adjust the class centroid ck considering the unlabeled samples:

ck =
Nk

Nk + N̂k

Nk∑
i=1

Wk,i · hki +
N̂k

Nk + N̂k

N̂k∑
i=1

p̂k,i · ĥki (11)

where ĥki = fθ(x̂
k
i), N̂k is the number of samples of class k

in Du with the propagated label.
The class centroids are initialized and adjusted by both

labeled and unlabeled samples on the embedding space, from
which we formalize the regularization loss derived from the
labeled samples as follows:

LReg(θ) = −
∑

k
logWθ(y = k|x) (12)

As both the reconstruction and regularization losses are
normalized, we define the global optimization objective as:

minθ(LR + λLReg) (13)

where λ ≥ 0 is a hyperparameter that balances the two losses.
Importantly, LReg is included such that the embedding process
not only serves to reduce the dimensions – it is actively
conditioned to facilitate the encoder in learning class-separable
embeddings. In practice, SMATE is not sensitive to λ (see Fig.
3 in Section V-B3); then for all the experiments, we set λ = 1.

V. EXPERIMENTS

In this section, we evaluate the performance of the Spatio-
temporal representation learned by SMATE. Firstly, we show
the experimental setup, including the dataset information,
hyperparameters’ setting, baseline descriptions, and evaluation
metrics. Then we evaluate the performance of the model with
different baselines on both supervised and semi-supervised
learning tasks. Finally, we analyze the Spatial Modeling Block
regarding its ability to model the dimensional interactions in
MTS. The model was trained using the Adam optimizer [37]
on a single Tesla V100 GPU of 32 Go memory with CUDA
10.2. The authors are devoted to promoting reproducibility.
Therefore, the source code, datasets, and instructions are
publicly available2.

A. Experimental setup

We evaluate the learned MTS representation on both classi-
fication and semi-supervised classification tasks. As SMATE
allows learning class-separable representations, then an SVM
classifier is powerful enough [20] to validate the learned repre-
sentations. For the classification task, we firstly adopt the full
labeled training set to learn the class-separable representations,
then we train an SVM classifier with radial basis function
kernel on the embedding space. For the semi-supervised
aspect, we apply different portions of training labels to train
the semi-supervised representation model, serving to learn the
SVM classifier with the propagated labels from the distance-
based class probability.

1) Datasets description: We evaluate our proposed method
on the newly released UEA archive [33], including 30 MTS
datasets from various application domains3, which have a big
difference in dimension size (2 ∼ 963), sample length (8
∼ 3000) and the number of training samples (12 ∼ 7494).
Readers can find information about the selected datasets sin
Table III. We adopt the default train/test split of the archive.
All 30 datasets are chosen for supervised analysis, whereas the
datasets {ArticularyWordR., Epilepsy, Heartbeat, SelfRegula-
tionSCP1} from four different domains are adopted for semi-
supervised study.

2https://github.com/SMATE2021/SMATE
3The datasets can be found in www.timeseriesclassification.com

TABLE III: MTS dataset information

Domain Dataset Samples Dim. (M) Length (T) Class

Human
Activity

BasicMotions 40/40 6 100 4
Cricket 108/72 6 1197 12

Epilepsy 137/138 3 206 4
ERing 30/270 4 65 6

Handwriting 150/850 3 152 26
Libras 180/180 2 45 15

N/ATOPS 180/180 24 51 6
RacketSports 151/152 152 30 4

UWaveGestureLibrary 120/320 6 30 4

Motion

ArticularyWordR. 275/300 9 144 25
CharacterTrajectories 1422/1436 3 182 20

EigenWorms 128/131 6 17984 5
PenDigits 7494/3498 2 8 10

ECG AtrialFibrillation 15/15 2 640 3
StandWalkJump 12/15 4 2500 3

EEG/
MEG

FaceDetection 5890/3524 144 62 2
FingerMovements 316/100 28 50 2

HandMovementDirection 160/74 10 400 4
InsectWingbeat 30000/20000 200 30 10
JapaneseVowels 270/270 12 29 9
MotorImagery 278/100 64 3000 2

SelfRegulationSCP1 268/293 6 896 2
SelfRegulationSCP2 200/180 7 1152 2

Audio
Spectra

DuckDuckGeese 50/50 1345 270 5
Heartbeat 204/205 61 405 2
Phoneme 3315/3353 11 217 39

SpokenArabicDigits 6599/2199 13 93 10

Others
EthanolConcent. 261/263 3 1751 4

LSST 2459/2466 6 36 14
PEMS-SF 267/173 963 144 7

TABLE IV: Network Architecture of SMATE

Module Layer Type

Temporal
Channel

1 GRU (128)
2 GRU (128)
3 GRU (128)
4 AveragePooling1D(P , P , 0)

Spatial
Channel

1 SMB1 + Conv1D(8,1,0) -128 filters +
Batch Norm + ReLU

2 SMB2 + Conv1D(5,1,0) -256 filters +
Batch Norm + ReLU

3 SMB3 + Conv1D(3,1,0) -128 filters +
Batch Norm + ReLU

4 AveragePooling1D(P , P , 0)

FC 1 FC (128) + Batch Norm + LeakyReLU
2 FC (128) + Batch Norm

SMB1

1 AveragePooling1D(8, 1, 0)
2 FC (d

′
) + ReLU

3 FC (M) + Sigmoid

SMB2

1 AveragePooling1D (5, 1, 0)
2 FC (8) + ReLU
3 FC (128) + Sigmoid

SMB3

1 AveragePooling1D (3, 1, 0)
2 FC (16) + ReLU
3 FC (256) + Sigmoid

Decoder

1 UpSampling1D (P)
2 GRU (128)
3 GRU (128)
4 GRU (M)

2) Hyperparameters Setting: [Network Architecture] As
shown in Table IV, we set 3 GRU layers with a hidden
dimension size of 128 for the Temporal Channel. Two 1-D
Average Pooling layers are applied for Temporal and Spatial
Channels, respectively, where we give the pool size, stride and
padding in the bracket. We provide the kernel size, stride, and
padding in the brackets of Conv1D. The SMBs are configured
with consistent parameters of their neighbor Conv1D.

However, as the datasets are collected from different do-
mains with a big difference in M, T, and N, it is impractical

to apply a unified parameter setting on all datasets. The kernel
size m of the three convolution modules is set to (8,5,3), except
the PenDigits dataset for which the kernels are set to (4,1,1)
as it is infeasible to apply our default kernel size “8” into an
8-length time series. The hidden dimension size p′ in SMB
and pool size P are set as follows:

d
′
=

M/10, 100 ≤M
M/4, 10 ≤M < 100
M, M < 10

,P =

 T/20, 1000 ≤ T
T/10, 50 ≤ T < 1000
T/4, T < 50

(14)

[Experiment Parameters] The Adam optimizer is set with
the learning rate of 0.00001 and the default exponential decay
rate in Keras. As there are limited training samples in most
of the UEA datasets, it is not feasible to separate a validation
set from the small size of training samples. For instance, the
dataset “StandWalkJump” contains only 12 training samples
for three classes. It is impractical to split the small training
samples into training and validation sets. Therefore, for the
datasets with less than 100 training samples, we define the stop
condition based on the training loss. For the rest, the validation
split is set to 0.2. We set the stop condition to hold when the
difference of training/validation loss between epochs is less
than a small threshold, 0.0001 for three consecutive steps.

B. Classification Performance Evaluation

We use the accuracy as the default metric for the supervised
tasks, which is the default criterion in Time Series Classifica-
tion work [5]. We also report the number of Win/Ties and the
average rank [28] of different methods.

1) Comparison Methods: We compare the performance of
a classification task with 13 benchmark approaches, including
both classical data mining and recent deep learning methods.
We adopt the default parameter settings described in each
paper for testing. The methods are summarized as follows:
• Distance-based Nearest Neighbor (1NN) on non-

normalized (non-norm) or normalized (norm) MTS
[31]. 1NN-ED (non-norm & norm): Euclidean Distance;
1NN-DTWI (non-norm & norm): Sum of Dynamic
Time Warping (DTW) distance [32] on each variable;
1NN-DTWD (non-norm & norm): DTW distance applied
directly on multi-variate vectors; 1NN-DTWA (norm):
Adaptive distance selected between DTWI and DTWD

with higher accuracy at run time.
• Bag-of-patterns classifier. WEASEL+MUSE [13]: the

logistic regression classifier on top of the bag of discrimi-
native features that are extracted from different variables.

• Deep Learning-based classifier. USRL [19]: SVM clas-
sifier on the representation learned via unsupervised
temporal encoding, the Contrastive Learning on Triplet
Loss is adopted for adjusting the representation space;
TapNet [28]: a Softmax function over MTS embeddings,
which are learned from a set of variable combinations
(i.e., multi-view on the variables); MLSTM-FCN [14]:
a multi-layer perceptron (MLP) with Softmax function
over the concatenated LSTM and CNN layers, capturing
the spatial interactions between 1-D series; CA-SFCN
[25]: Cross Attention Mechanism on both temporal and

spatial axes, working with Fully Convolutional Networks;
SMATENR: SMATE without supervised Regulariza-
tion, instead, a Softmax layer is applied on the embedding.

2) Results Analysis: Table V shows the accuracy results
comparison between our proposition and the 13 baselines
mentioned above. We show as well the average rank and the
number of Wins/Ties of each method. “N/A” indicates the
model is not applicable due to memory overflow. Overall,
SMATE defends its reliability with 11 Wins/Ties and the high-
est average rank of 3.85 among all the baselines. The current
state-of-the-art deep learning method (TapNet, CA-SFCN) and
the powerful data mining method (WEASEL+MUSE) have
close ranks (4.73/5.45/4.66). CA-SFCN performs the best on
five datasets but is not applicable on seven datasets due to
memory overflow. WEASEL+MUSE performs among the best
in Human Activity Recognition tasks (BasicMotions, Criket,
Epilepsy), as the class-discriminative patterns can be directly
extracted from the raw data space. Besides, the unsupervised
representation learning method (USRL) performs much worse
than SMATE with the same SVM classifier, confirming the
reliability of our supervised regularization on the embed-
ding space. Moreover, SMATE achieves the best performance
among the baselines on all the datasets of EEG/MEG appli-
cations [33] (FaceDetection, FingerMovements, HandMove-
mentDirection, MotorImagery, SelfRegulationSCP1, SelfRegu-
lationSCP2), where the signals (i.e., variables) generally have
strong and dynamic dependencies with each other. The spatial
dynamic interactions could be essential characteristics that
SMATE has successfully captured. SMATENR performs much
worse than SMATE, proving that the supervised regularization
process helps to build the class-separable embeddings.

However, SMATE produces visibly low accuracy on some
datasets, e.g., 0.133 on AtrialFibrillation, 0.177 on Phoneme,
on which the baselines perform poorly as well. This is prob-
ably caused by the original data source.

3) Parameter effects on model performance: We analyse
the effects of window/kernel size m, pool size P and regular-
ization weight λ on the example dataset SelfRegulationSCP1.
In Fig. 3, we observe that a larger m brings higher model
accuracy, as it creates a larger receptive field captured by both
SMB and Conv1D block. Furthermore, the early convolutional
modules are more sensitive to m as they keep close to
the raw input features. A larger pool size P will reduce
the embedding size, thus affecting the preserved embedding
features and the training efficiency. SMATE is not sensitive to
λ. It can be explained by the fact that a stable reconstruction
process makes the model focus more on the regularization
of the embedding space. When λ=0, no regularization is
applied, leading to sparsely distributed embeddings with poor
prediction performance.

C. Semi-supervised Classification Performance

For semi-supervised tasks, we evaluate the classifier’s ac-
curacy at different supervision levels by varying the la-
beled samples in the training set. We select the datasets
{ArticularyWordR., Epilepsy, Heartbeat, SelfRegulationSCP1}

5 10 15
m

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

1st conv. (m, 5, 3)
2nd conv. (8, m, 3)
3rd conv. (8, 5, m)

0.0 0.1 0.2 0.3 0.4 0.5
/T

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Accuracy
100

110

120

130

140

150

160

170

Time (s)

0.0 0.2 0.4 0.6 0.8 1.00.5

0.6

0.7

0.8

0.9

1.0

Accuracy

Fig. 3: Parameter effects: left) the kernel/window size m at each con-
volutional module; mid) The pool size P for building the embedding;
right) the hyperparameter λ which weights the regularization loss.

from 4 different application domains. For comparison, we
applied one classic model 1NN-DTW-D [3] and three recently
proposed semi-supervised deep learning models: USRL [19],
Semi-TapNet [28] and MTL [30]. Since 1NN-DTW-D and
MTL are initially designed for UTS, we adapt them by:
• Adopting DTWD

4 [31] as distance in 1NN-DTW-D.
• Updating the MTS network optimization metrics in MTL.
741Figure 4 shows the classification accuracy at different

supervision levels. In a Motion Recognition task (Articulary-
WorkR.), from 10% labeled training set to fully labeled one,
the accuracy of SMATE varies only by 0.046, compared to
INN-DTW-D (0.264), USRL (0.286), Semi-TapNet (0.151)
and MTL(0.225), showing that SMATE is capable of learn-
ing a class-separable representation under weak supervision
and gives a better prediction than other classifiers under
intense supervision. This conclusion is also demonstrated
in EEG/MEG applications (SelfRegulationSCP1), with 10%
labeled samples, SMATE is capable of obtaining a higher
accuracy (0.781) than fully supervised 1NN-DTW-D (0.775),
USRL (0.771), Semi-TapNet (0.739) and MTL (0.730). In
Human Activity domain (Epilepsy), Semi-TapNet performs
the worst with low supervised ratios, which can be explained
by the fact that the limited labels restrain the intermediate-
trained TapNet classifier for predicting the pseudo-labels. In
an Audio Spectra task (Heartbeat), though the fully supervised
accuracy of SMATE (0.741) is not as good as Semi-TapNet
(0.751), the weakly supervised SMATE with 10% labeled
samples performs the best among all semi-supervised models,
indicating the reliability of the semi-supervised representation
learned by SMATE.

D. Visualization & Interpretation of the Representation Space

Apart from the thorough exploration of the weakly la-
beled samples, the representation space learned via SMATE
shows good interpretability compared to the traditional Deep
Learning models [14], [15], [24], [25] where the intermediate
representations are not intuitively explainable.

We show in Figure 5 that t-SNE visualization of the repre-
sentation space for the Epilepsy dataset, which contains four
human activities: Walking while gesturing, Walking slowly,
Walking fast, Walking normally. The 137 samples in the
training set are projected to the representation space with 10%

4DTW-D and DTWD are two different distance measures designed respec-
tively for Univariate and Multivariate Time Series

TABLE V: Performance Comparison for MTS classification over UEA MTS archive

Dataset SMATE SMATENR USRL TapNet MLSTM
-FCN CA-SFCN WEASEL

+MUSE 1NN-ED 1NN-
DTWI

1NN-
DTWD

1NN-ED
(norm)

1NN-DTWI

(norm)
1NN-DTWD

(norm)
1NN-DTWA

(norm)
ArticularyWordR. 0.993 0.987 0.987 0.987 0.973 0.97 0.99 0.97 0.98 0.987 0.97 0.98 0.987 0.987
AtrialFibrillation 0.133 0.133 0.133 0.333 0.267 0.333 0.333 0.267 0.267 0.2 0.267 0.267 0.22 0.267

BasicMotions 1 1 1 1 0.95 1 1 0.675 1 0.975 0.676 1 0.975 1
CharacterTrajectories 0.984 0.997 0.994 0.997 0.985 0.988 0.99 0.964 0.969 0.99 0.964 0.969 0.989 0.989

Cricket 0.986 0.968 0.986 0.958 0.917 0.972 1 0.944 0.986 1 0.944 0.986 1 1
DuckDuckGeese N/A N/A 0.675 0.575 0.675 N/A 0.575 0.275 0.55 0.6 0.275 0.55 0.6 0.567

EigenWorms N/A N/A 0.878 0.489 0.504 N/A 0.89 0.55 0.603 0.618 0.549 N/A 0.619 N/A
Epilepsy 0.964 0.946 0.957 0.971 0.761 0.986 1 0.667 0.978 0.964 0.666 0.978 0.964 0.979
ERing 0.981 0.904 0.88 0.904 0.941 0.856 0.964 0.93 0.93 0.93 0.93 0.93 0.93 0.93

EthanolConcentration 0.399 0.373 0.236 0.323 0.373 0.323 0.43 0.293 0.304 0.323 0.293 N/A 0.323 0.316
FaceDetection 0.647 0.556 0.528 0.556 0.545 N/A 0.545 0.519 0.513 0.529 0.519 0.5 0.529 0.529

FingerMovements 0.62 0.55 0.54 0.53 0.58 0.59 0.49 0.55 0.52 0.53 0.55 0.52 0.53 0.509
HandMovementD. 0.554 0.365 0.27 0.378 0.365 0.324 0.365 0.279 0.306 0.231 0.278 0.306 0.231 0.224

Handwriting 0.421 0.335 0.533 0.357 0.286 0.322 0.605 0.371 0.509 0.607 0.2 0.316 0.286 0.601
Heartbeat 0.741 0.615 0.737 0.751 0.663 0.756 0.727 0.62 0.659 0.717 0.619 0.658 0.717 0.571

InsectWingbeat N/A N/A 0.16 0.208 0.167 N/A N/A 0.128 N/A 0.115 0.128 N/A N/A N/A
JapaneseVowels 0.965 0.924 0.989 0.965 0.976 0.973 0.973 0.924 0.959 0.949 0.924 0.959 0.949 0.959

Libras 0.849 0.834 0.867 0.85 0.856 0.89 0.878 0.833 0.894 0.872 0.833 0.894 0.87 0.879
LSST 0.582 0.568 0.558 0.568 0.373 0.674 0.59 0.456 0.575 0.551 0.456 0.575 0.551 0.551

MotorImagery 0.59 0.59 0.54 0.59 0.51 N/A 0.51 0.39 N/A 0.5 0.51 N/A 0.5 0.5
N/ATOPS 0.922 0.87 0.944 0.939 0.889 0.956 0.87 0.86 0.85 0.883 0.85 0.85 0.883 0.883
PEMS-SF 0.803 0.744 0.688 0.751 0.699 N/A N/A 0.705 0.734 0.711 0.705 0.734 0.711 0.73
PenDigits 0.98 0.98 0.983 0.98 0.978 0.975 0.948 0.973 0.939 0.977 0.973 0.939 0.977 0.977
Phoneme 0.177 0.19 0.246 0.175 0.11 0.19 0.19 0.104 0.151 0.151 0.104 0.151 0.151 0.151

RacketSports 0.849 0.816 0.862 0.868 0.803 0.875 0.934 0.868 0.842 0.803 0.868 0.842 0.803 0.858
SelfRegulationSCP1 0.887 0.874 0.771 0.739 0.874 0.734 0.71 0.771 0.765 0.775 0.771 0.765 0.775 0.786
SelfRegulationSCP2 0.567 0.539 0.556 0.55 0.472 N/A 0.46 0.483 0.533 0.539 0.483 0.533 0.539 0.539
SpokenArabicDigits 0.979 0.967 0.956 0.983 0.99 0.982 0.982 0.967 0.96 0.963 0.967 0.959 0.963 0.963

StandWalkJump 0.533 0.4 0.4 0.4 0.067 0.2 0.333 0.2 0.333 0.2 0.2 0.333 0.2 0.333
UWaveGestureLibrary 0.897 0.869 0.884 0.894 0.891 0.8 0.916 0.881 0.868 0.903 0.81 0.868 0.903 0.9

Avg. Rank 3.85 6.19 5.9 4.73 7.33 5.45 4.66 9.3 7.43 6.37 9.37 7.88 6.83 6.21
Wins (Ties) 11 3 6 5 2 5 8 0 2 2 0 2 1 2

0.0 0.2 0.4 0.6 0.8 1.0
Supervised Ratio r

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

USRL
Semi-TapNet
SMATE

1NN-DTW-D
MTL

(a) ArticularyWordR. (Motion)

0.0 0.2 0.4 0.6 0.8 1.0
Supervised Ratio r

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

USRL
Semi-TapNet
SMATE

1NN-DTW-D
MTL

(b) Epilepsy (Human Activity)

0.0 0.2 0.4 0.6 0.8 1.0
Supervised Ratio r

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

USRL
Semi-TapNet

SMATE
1NN-DTW-D

MTL

(c) Heartbeat (Audio Spectra)

0.0 0.2 0.4 0.6 0.8 1.0
Supervised Ratio r

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

USRL
Semi-TapNet

SMATE
1NN-DTW-D

MTL

(d) SelfRegulationSCP1 (EEG/MEG)

Fig. 4: Semi-supervised performance comparison on datasets from different domains

100 75 50 25 0 25 50 75
100

75

50

25

0

25

50

75

Walking while gesturing
Walking fast

Walking slowly
Walking normal

(a) Without any regularization

100 50 0 50 100
100

50

0

50

100

Walking while gesturing
Walking fast

Walking slowly
Walking normal

(b) Regularization step 1: supervised
initialization of the class centroids

10 5 0 5 10

10

5

0

5

Walking while gesturing
Walking fast

Walking slowly
Walking normal

(c) Regularization step 2: supervised
adjustment of the class centroids

15 10 5 0 5 10

6

4

2

0

2

4

Walking while gesturing
Walking fast

Walking slowly
Walking normal

(d) Regularization step 3: unsupervised
adjustment of the class centroids

Fig. 5: The g visualization of the representation space for the Epilepsy dataset. We set the supervised ratio to 0.1. The colors of the embeddings
represent their inherent labels, which are not fully adopted for training. The class centroids are marked by ?. (a) The representation space
obtained only by the reconstruction objective without any regularization. (b) Regularization step 1: 10% labeled samples in the training set
are adopted to initialize the class centroids. (c) Regularization step 2: the same labeled samples are deployed to adjust the class centroids.
(d) Regularization step 3: the rest unlabeled samples are deployed to adjust the class centroids.

labels adopted for training. We show respectively the space
visualization at each regularization step. The results suggest
that: 1) the embeddings obtained only with the autoencoder’s
reconstruction objective are sparsely distributed, as the auto-
encoder focuses more on the overall restoration from the
embeddings, but less on the inner difference between the
class-specific samples; 2) with the regularization step 1, the
class centroids initialized by the 10% labeled samples tend
to assemble the embeddings with the same inherent labels.
The assembling ability is further enhanced by the supervised
adjustment in regularization step 2. 3) the unlabeled samples
are thoroughly explored in regularization step 3 to foster
the class-specific clusters, which allow building a simple but
reliable classifier such as SVM. 4) the representation space is

interpretable for not only the effect of the weak supervision
but also the classification results. For instance, in Figure
5d, three samples of Walking while gesturing stay close to
the class centroid of Walking fast, which may lead to the
misclassification of certain samples in the two classes. To
improve the classifier, more labels of the two classes in the
training set can be added.

E. Performance of Spatial Modeling Block (SMB)

To validate the Spatial Modeling Block (SMB), firstly,
we compare the classification accuracy of SMATE with or
without integrating SMB on the 27 datasets that SMATE
has successfully executed. Then we rebuild SMATE by re-
placing SMB with the following modules in the state-of-

the-art work which learn the variable relationships of MTS:
Random Dimension Permutation (RDP) in TapNet [28] and
Squeez-and-Excitation (SE) in MLSTM-FCN [14]. Briefly,
SMATE-SMB achieves [17 Wins|8 Ties|2 Losses] to SMATE-
NonSMB, indicating that SMB contributes to a better MTS
representation.

In Figure 6, we give a one-to-one comparison between SMB
and SE/RDP on the 27 datasets. We find that SMATE performs
better than other modules on modeling the spatial interactions:
[14 Wins|8 Ties|5 Losses] to SE, [12 Wins|9 Ties|6 Losses]
to RDP. RDP performs relatively better than SE, as a set of
grouped variables produced by RDP provides various MTS
views, allowing exploring the interactions between the subsets
of all variables more thoroughly. However, extra parameters
for variable groups are introduced. SE is a parameter-free
module but considers each variable has a unique and stable
state when interacting with others, which ignores the dynamic
features in time series. SMB answers both the questions of
the parameter-free settings and the dynamic interactions. The
results show that capturing the spatial dynamic interactions
at the sub-sequence level performs better than modeling the
variable interactions at the sequence level [14], [28].

14 Wins,8 Ties,5 Losses

0.0 0.2 0.4 0.6 0.8 1.0

SMATE with SMB

0.0

0.2

0.4

0.6

0.8

1.0

S
M
A
T
E
w
it
h
S
E SE is better here

SMB is better here

12 Wins,9 Ties,6 Losses

0.0 0.2 0.4 0.6 0.8 1.0

SMATE with SMB

0.0

0.2

0.4

0.6

0.8

1.0

S
M
A
T
E
w
it
h
R
D
P

RDP is better here

SMB is better here

Fig. 6: Accuracy performance comparison between left) SMB & SE,
right) SMB & RDP, which are are integrated separately into SMATE.

F. Efficiency Analysis

As the classical data mining classifiers do not benefit from
the GPU’s acceleration, it is unfair to compare them with the
deep learning models on different hardware. Here, we compare
SMATE with the deep learning models {MLSTM-FCN [14],
CA-SFCN [25], USRL [19], and TapNet [28]}. Table VI
shows the models’ parameter numbers on ArticularyWordR..
Nevertheless, they do not represent the models’ efficiency.

TABLE VI: Parameter numbers of deep learning models on MTSC
ArticularyWordR. SMATE MLSTM-FCN CA-SFCN USRL TapNet
Param. number 564585 597865 685965 368655 635285

Figure 7 shows the computational efficiency concerning the
different factors: (a) the number of training epochs, we take
the dataset ArticularyWordRecognition with (Ntrain, M , T) =
(275, 9, 144); (b) the TS length, we select EthanolConcentra-
tion with (Ntrain, M , T) = (261, 3, 1751), and do random re-
samplings over raw sequences; (c) the number of TS instance
in the training set, we choose LSST with (Ntrain, M , T) =
(2459, 6, 36) and randomly re-sample the TS instances; (d) the
number of variables, we select PEMS-SF with (Ntrain, M,
T) = (267, 963, 144) and randomly re-sample the TS variables.
With the models’ default parameter settings mentioned in their

papers, we set 2000 training steps for USRL, 3000 training
epochs for others during the tests on the factors (b)(c)(d).

Figure 7 shows that the training time of the deep learning
models tends to be linear in the four factors. More specifically,
the results suggest that: 1) SMATE is generally much more
efficient on short TS (with T <∼ 500), and more costly than
MLSTM-FCN on long TS (see Figure 7b). As an MTS in-
stance x ∈ RT×M with larger T brings a sequence embedding
h ∈ RL×D with a larger L in SMATE, the regularization on
a lager embedding space becomes more costly. 2) SMATE
is generally more efficient than the competitors, but tends to
be more sensitive to the variable numbers M than USRL and
TapNet (see Figure 7d). To explain this, first, Triplet Loss
adopted in USRL requires intensive distance computations
between the embeddings, which offsets the effect of larger
input space. This can be also demonstrated in Figure 7b &
7c, where USRL is not sensitive to the TS length T, but
highly sensitive to the number of TS instances Ntrain. Second,
the efficiency of SMATE is greatly affected by the input and
output space of the auto-encoder, which is more sensitive to
the variable numbers than the Random Dimension Permutation
(RDP) block in TapNet, which works only on the input space.

Overall, USRL [19] is an order slower than SMATE due to
its mini-batch optimization strategy and huge distance compu-
tations required by Triplet Loss. CA-SFCN [25] performs less
than SMATE because of its costly cross attention mechanism
on both temporal and spatial axes. However, MLSTM-FCN
[14] and TapNet [28] outperform SMATE for long TS length
(T > 500) or huge variable numbers (M > 300).

G. Discussion

Our approach has several advantages. First, owing to the
Spatio-Temporal dynamic encoder, SMATE allows exploring
more thoroughly the essential characteristics of MTS. TapNet
[28] and MLSTM-FCN [14] generally consider the correlation
between the entire 1-D series, while USRL [19] processes
indifferently the MTS and UTS, they all ignore the fact that the
interactions between 1-D segments may evolve in the dynamic
sequence, which is especially important in certain domains
(e.g., EEG/MEG applications).

Second, SMATE explores thoroughly the unlabeled samples,
which contributes not only to the autoencoder’s reconstruction
objective, but also to the regularization process on the embed-
ding space. While Semi-TapNet [28] considers unlabeled data
only with the pseudo-labels predicted by intermediate-trained
classifiers, which is less reliable when there are limited labels.
USRL [19] trains the representation without any supervision,
which shows less advantage for the classification task.

Third, the representation space learned via SMATE is inter-
pretable for showing the effect of the three-step regularization
process and explaining the classification results, which allows
taking further actions to improve the classifier.

Finally, SMATE allows an efficient representation learn-
ing and classification for MTS. On the one hand, from the
distance-based approaches (e.g. 1NN-based classifiers [31])
to the bag-of-patterns classifier (e.g., WEASEL+MUSE [13]),

102 103

Number of Epochs

101

102

103

Ti
m
e
(s
ec

on
d)

SMATE
CA-SFCN
TapNet

MLSTM-FCN
USRL

(a) ArticularyWordRecognition:
(Ntrain,M ,T) = (275,9,144)

102 103
TS Length

102

103

Ti
m
e
(s
ec
on

d)

SMATE
CA-SFCN
TapNet

MLSTM-FCN
USRL

(b) EthanolConcentration:
(Ntrain,M ,T) = (261,3,1751)

102 103

Number of TS Instances

102

103

Ti
m
e
(s
ec

on
d) SMATE

CA-SFCN
TapNet
MLSTM-FCN
USRL

(c) LSST: (Ntrain,M ,T) =
(2459,6,36)

102 103

Number of Variables

103

Ti
m

e
(s

ec
on

d) SMATE
CA-SFCN
TapNet

MLSTM-FCN
USRL

(d) PEMS-SF: (Ntrain,M,T) =
(267,963,144)

Fig. 7: Training time on four datasets with regard to: (a) the number of training epochs; (b) the TS length T; (c) the number of TS instance
Ntrain; (d) the number of variables M. We did not report the results of CA-SFCN [25] for M > 200 in (d) due to the memory overflow.

the classic data mining methods always show a high time
complexity [5]. On the other hand, the deep learning-based ap-
proaches show no significant efficiency advantage to SMATE
due to their larger parameter space to optimize.

VI. CONCLUSION

In this paper, we proposed SMATE, to learn the Spatial-
temporal representation on weakly-labeled multivariate time
series. Inside the autoencoder-based structure, the Spatial-
temporal encoder maps the temporal dynamic features and the
spatial dynamic interactions into a low dimensional embedding
space. A semi-supervised three-step regularization process is
proposed to compel the model in learning class-separable
representation. The weak supervision on the embedding space
allows building a reliable classifier, which is extremely valu-
able in real-life scenarios with label shortage issues. The
results show that the evolving variable interactions (i.e., spatial
dynamics) play an essential role in modeling multivariate time
series. Moreover, SMATE allows for visual interpretability
in both the learned representation and the semi-supervised
representation learning process.

A recent experimental study on MTCS models has been
conducted in [5]. It concludes that MTSC is still at an earlier
stage of development than univariate TSC. For instance, exist-
ing approaches do not consider typical features of real-world
data, such as missing values and unequal length time series.
Hence, our future work will be oriented towards extending
SMATE to support multivariate time series with missing
values and unequal length. Further, we intend to improve the
model by, e.g., incorporating insights from CoDATS [38] with
time series domain adaptation, and from ROCKET [39] with
random convolutional kernels for feature extraction.

ACKNOWLEDGEMENTS
This research was supported by DATAIA convergence in-

stitute as part of the Programme d’Investissement d’Avenir
(ANR-17-CONV-0003) operated by DAVID Lab, UVSQ, Uni-
versité Paris-Saclay. The authors would like to thank Anthony
Bagnall and his team for providing the community with
valuable datasets and source codes in the UEA & UCR Time
Series Classification Repository. The authors would also like
to thank Eamonn Keogh for his careful review and remarks
on the preliminary version of this paper, as well as Nicoleta
Preda and Zaineb Chelly for their suggestions.

REFERENCES

[1] L. Wei and E. Keogh, “Semi-supervised time series classification,” in
Proc. ACM SIGKDD’06.

[2] M. N. Nguyen, X. L. Li, and S. K. Ng, “Positive unlabeled learning for
time series classification,” in IJCAI, 2011.

[3] Y. Chen, B. Hu, E. Keogh, and G. E. A. P. A. Batista, “DTW-D: Time
Series Semi-Supervised Learning from a Single Example,” in KDD’13.

[4] C. A. Ratanamahatana and D. Wanichsan, “Stopping Criterion Selection
for Efficient Semi-supervised Time Series Classification,” Soft. Eng.,
Arti. Intel., Net. & Para./Distri. Comp., 2008.

[5] R. A. Pasos, F. Michael, L. James, M. Matthew, and B. Anthony,
“The great multivariate time series classification bake off: a review and
experimental evaluation of recent algorithmic advances.” DMKD, 2020.

[6] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” in IJCNN, 2017.

[7] J. Lines, S. Taylor, and A. Bagnall, “HIVE-COTE: The Hierarchical
Vote Collective of Transformation-based Ensembles for Time Series
Classification,” in IEEE ICDM, 2016.

[8] M. S. Cetin, A. Mueen, and V. D. Calhoun, “Shapelet ensemble for
multi-dimensional time series,” in SDM, 2015.

[9] J. Grabocka, M. Wistuba, and L. Schmidt-Thieme, “Fast classification
of univariate and multivariate time series through shapelet discovery,”
Knowledge and Information Systems, vol. 49, no. 2, pp. 429–454, 2016.

[10] R. Mousheimish, Y. Taher, and K. Zeitouni, “Automatic Learning of
Predictive CEP Rules: Bridging the Gap between Data Mining and
Complex Event Processing,” in DEBS, 2017.

[11] A. Dorle, F. Li, W. Song, and S. Li, “Learning Discriminative Virtual
Sequences for Time Series Classification,” in CIKM, 2020.

[12] M. Gokce Baydogan, G. Runger, M. G. Baydogan, and G. Runger,
“Learning a symbolic representation for multivariate time series clas-
sification,” Data Min Knowl Disc, vol. 29, pp. 400–422, 2015.

[13] P. Schäfer and U. Leser, “Multivariate Time Series Classification with
WEASEL+MUSE,” Tech. Rep., 2017.

[14] F. Karim, S. Majumdar, H. Darabi, and S. Harford, “Multivariate lstm-
fcns for time series classification,” Neural Networks, vol. 116, 2019.

[15] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, “Time series
classification using multi-channels deep convolutional neural networks,”
in WAIM’14.

[16] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent
Neural Networks for Multivariate Time Series with Missing Values,”
Sci. Rep.’18.

[17] Y. Bai, L. Wang, Z. Tao, S. Li, and Y. Fu, “Correlative Channel-Aware
Fusion for Multi-View Time Series Classification,” in AAAI’21.

[18] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE TPAMI’13, pp. 1798–1828.

[19] J.-Y. Franceschi, A. Dieuleveut, and M. Jaggi, “Unsupervised Scalable
Representation Learning for Multivariate Time Series,” in NeurIPS,
2019.

[20] L. Wu, I. En-Hsu, Y. J. Yi, F. Xu, Q. Lei, and M. J. Witbrock,
“Random Warping Series: A Random Features Method for Time-Series
Embedding,” in AISTATS, 2018.

[21] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and
E. Keogh, “Experimental comparison of representation methods and
distance measures for time series data,” DMKD, 2013.

[22] S. Li, Y. Li, and Y. Fu, “Multi-View Time Series Classification: A
Discriminative Bilinear Projection Approach,” in CIKM, 2016.

[23] P. Schäfer and U. Leser, “Fast and Accurate Time Series Classification
with WEASEL,” in CIKM, 2017.

[24] J. Yang, M. N. Nguyen, P. P. San, X. L. Li, and S. Krishnaswamy,
“Deep convolutional neural networks on multichannel time series for
human activity recognition,” in IJCAI, 2015.

[25] Y. Hao and H. Cao, “A New Attention Mechanism to Classify Multi-
variate Time Series,” in IJCAI, 2020.

[26] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang, “Connecting
the Dots: Multivariate Time Series Forecasting with Graph Neural
Networks,” in KDD, 2020.

[27] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion Convolutional Recurrent
Neural Network: Data-Driven Traffic Forecasting,” in ICLR, 2018.

[28] X. Zhang, Y. Gao, J. Lin, and C.-T. Lu, “TapNet: Multivariate Time Se-
ries Classification with Attentional Prototypical Network,” in AAAI’20.

[29] H. Wang, Q. Zhang, J. Wu, S. Pan, and Y. Chen, “Time series feature
learning with labeled and unlabeled data,” Pattern Recognition, 2019.

[30] S. Jawed, J. Grabocka, and L. Schmidt-Thieme, “Self-Supervised Learn-
ing for Semi-Supervised Time Series Classification,” in PAKDD’20.

[31] M. Shokoohi-Yekta, J. Wang, and E. Keogh, “On the Non-Trivial
Generalization of Dynamic Time Warping to the Multi-Dimensional
Case,” in SDM, 2015.

[32] M. Shokoohi-Yekta, B. Hu, H. Jin, J. Wang, and E. Keogh, “Generalizing
DTW to the multi-dimensional case requires an adaptive approach HHS
Public Access,” Data Min Knowl Discov, vol. 31, no. 1, pp. 1–31, 2017.

[33] A. B. Hoang, A. Dau, J. Lines, M. Flynn, J. Large, A. Bostrom,
P. Southam, and E. Keogh, “The UEA multivariate time series clas-
sification archive,” Tech. Rep., 2018.

[34] Q. Ma, J. Zheng, S. Li, and G. W. Cottrell, “Learning Representations
for Time Series Clustering,” in NeurIPS, 2019.

[35] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” in ICML’15.

[36] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted
Boltzmann Machines,” in ICML, 2010.

[37] D. P. Kingma and J. Lei Ba, “Adam: A Method for Stochastic Opti-
mization,” in ICLR, 2015.

[38] G. Wilson, J. R. Doppa, and D. Cook, “Multi-source deep domain adap-
tation with weak supervision for time-series sensor data,” in KDD’20.

[39] A. Dempster, F. Petitjean, and G. I. Webb, “ROCKET: Exceptionally
fast and accurate time series classification using random convolutional
kernels,” DMKD, 2020.

