

SMATE: <u>Semi-supervised Spatio-Temporal</u> Representation Learning on <u>MultivariAte Time Series</u>

Jingwei Zuo, Karine Zeitouni, Yehia Taher

DAVID Lab, UVSQ, University of Paris-Saclay

IEEE International Conference on Data Mining (ICDM) 2021

Experimental Results

Conclusion

Multivariate Time Series (MTS)

Definition

- A sequence where each element is a M-d vector, M is the variable number:
 - $\mathbf{x} = (t_1, t_2, \dots, t_i, \dots, t_T)$, where $t_i \in \mathbb{R}^M$.
- When M=1, we call it *Univariate Time Series (UTS)*

A MTS sample representing "Running" activity (with 4 sensors) of the SHL¹ dataset.

 H. Gjoreski, M. Ciliberto, L. Wang, F. J. O. Morales, S. Mekki, S. Valentin, D. Roggen. "The University of Sussex-Huawei Locomotion and Transportation Dataset for Multimodal Analytics with Mobile Devices." IEEE Access 6 (2018): 42592-4260 08/12/2021 Experimental Results

Conclusion

Problem Statement

- Complex structure in Multivariate Time Series (MTS)
- Label shortage when learning from MTS

Objectives

- 1. Explore the features and learn an appropriate representation of Multivariate Time Series (MTS)
 - The **temporal dependencies** on time axis: **temporal dynamics**
 - The **dynamic interaction**s between the variables: spatial dynamics
- 2. Remedy to label shortage when learning from MTS
 - Huge cost on labelling MTS in real life
 - Weak supervision is envisaged

Experimental Results

Conclusion

Multivariate Time Series Features

- 1. Combine features from each variable (i.e., 1-D series)
 - Global features: 1NN-DTW_I [Yekta et al., DMKD'15]
 - Shapelet features: Shapelet Ensemble [Cetin et al., SDM'15], M-Shapelet Discovery [Grabocka et al., KAIS'16]
 - Motif features: WEASEL+MUSE [Schafer et al., AALTD'18], Global Discriminative Patterns [Nayak et al., SDM'18]
 - Deep Representation features: Multi-Channels CNN [Zheng et al., WAIM'14]
- 2. Extract features directly from all variables

Related work

- Global features: 1NN-DTW_D (1NN-DTW_A) [Yekta et al., DMKD'15]
- Motif features: Symbolic Representation for MTS (SMTS) [Baydogan et al., DMKD'15]
- Deep Representation features: Modified DNN approaches for Univariate TSC, e.g., LSTM-FCNs [Karim et al., ArXiv'19], InceptionTime [Fawaz et al., DMKD'20], ROCKET [Dempster et al., DMKD'20], etc.
- 3. Consider the interactions between the variables
 - Variable correlation: MLSTM-FCNs [Karim et al., Neural Networks'19]
 - Attention Mechanism: CA-SFCN [Hao et al. IJCAI'20]
 - 2D-CNN with 1D-CNN: MTEX-CNN [Assaf et al., ICDM'19], XCM [Fauvel et al., ArXiv'20]
 - Graph Pooling: MTPool [Xu et al., ArXiv'20]
 - Etc.

Experimental Results

Conclusion

Semi-supervised Learning (SSL) on TS

- 1. Self-training or Positive Unlabeled Learning-based models
 - **SSTSC** [Wei and Keogh, KDD'06]
 - LCLC [Nguyen et al., IJCAI'11]
 - **DTW-D** [Chen et al., KDD'13], etc.
 - SSSL [Wang et al., Pattern Recognit'19]
- 2. Clustering-based model

Related work

- **SUCCESS** [Marussy et al., ICAISC'13]
- 3. Self-Supervised Learning-based model
 - MTL [Javed et al., PAKDD'20]

Semi-supervised Learning on MTS

- USRL [Franceschi et al., NeurIPS'19]
- **TapNets** [Zhang et al., AAAI'20]

All these SSL approaches are designed for Univariate Time Series!

Proposal: SMATE

- Semi-supervised Spatio-Temporal Representation Learning on MultivAriate Time SEries
- **Representation Learning** on $\mathbf{x} \in \mathbb{R}^{T \times M}$
 - Learn a low-dimensional representation $\mathbf{h} \in \mathbb{R}^{L \times D}$, where L < T, D < M
 - **h** embeds the spatial^{*} and temporal features of **x**
- Semi-supervised regularization in the embedding space \mathcal{H}
 - Combine both labelled and unlabelled samples
 - Learn class-separable representations for downstream tasks, e.g., MTS classification

* We use the term "spatial" in this work to represent the variable axis, instead of indicating the physical spatial locations

Experimental Results

Conclusion

Spatio-temporal Representation on MTS

Intuitions

System status at time t

- Local value $\mathbf{x}_t \in \mathbb{R}^M$
- Neighbor values $s_t = [x_{t-m/2}, x_{t+m/2}]$

Spatio-temporal features

- Temporal Dynamic $p(\mathbf{x}_{t'} | \mathbf{x}_t)$
- Spatial Dynamic $p(s_{t'}|s_t)$
- Spatio-temporal dynamics $(x_t, s_t) \rightarrow (x_{t'}, s_{t'})$

The spatial and temporal structure in a MTS sample representing "Walking" activity (with 5 sensors) of the SHL¹ dataset.

Experimental Results

Conclusion

Spatio-temporal Representation on MTS

Spatial Modelling Block (SMB)

Related work

- Capture the spatial interaction at **segment level**
- 1-d average Pooling: output the **temporal status**
- 2 Fully Connected (FC) layers: **interacting** the temporal status **in spatial direction**
- **Output:** the weighted MTS considering the spatial interaction

$s_{H_i} \in \mathbb{R}^d$

- Horizontal temporal status
- $s_i \in \mathbb{R}^d$
- Spatial interaction weights

Experimental Results

Conclusion

SMATE: Model Structure

- Based on an **asymmetric auto-encoder** structure
- Two channels for **Spatio-temporal encoding**
 - GRU: $p(\mathbf{x}_{t'} | \mathbf{x}_t)$

Related work

- SMB + Conv1D: $p(s_{t'}|s_t)$
- Three-Step Regularization

Related work

Experimental Results

Conclusion

SMATE: Three-Step Regularization

08/12/2021

Experimental Results

Conclusion

SMATE: Joint Model Optimization

Related work

Regularization loss:

- With labelled samples
- With class centroids regularized by both labelled and unlabelled samples

$$L_{Reg}(\theta) = -\sum_{k} log W_{\theta}(y=k|\mathbf{x})$$

Reconstruction loss:

$$L_{R} = \mathbb{E}_{\mathbf{x}_{1:T}} \left[\sum_{t} \left\| \mathbf{x}_{t} - \tilde{\mathbf{x}}_{t} \right\|_{2} \right]$$

Objective function:

$$\min_{\theta} (L_R + \lambda L_{Reg})$$

Objectives

1. Evaluating SMATE for fully supervised representation learning

30 datasets from UEA Archive¹

13 baselines:

- Distance-based 1-NN classifier on non-normalized (non-norm) or normalized (norm) MTS
 - **1NN-ED** (non-norm & norm)
 - $1NN-DTW_{I}(non-norm \& norm); 1NN-DTW_{D}(non-norm \& norm)$
 - **1NN-DTW**_A (*norm*) [Yekta et al., DMKD'15]
- Bag-of-patterns classifier
 - WEASEL+MUSE [Schäfer et al., AALTD'18]
- Deep Learning-based classifier:
 - **SMATE_{NR}**: SMATE without supervised Regularization
 - MLSTM-FCNs [Karim et al., Neural Networks'19], USRL[Franceschi et al., NeurIPS'19], TapNet [Zhang et al., AAAI'20], CA-SFCN [Hao et al., IJCAI'20]

^{1.} www.timeseriesclassification.com

Fully supervised representation learning

SVM on learned representation •

	Dataset	SMATE	SMATE _{NR}	USRL	TapNet	MLSTM -FCN	CA-SFCN	WEASEL +MUSE	1NN-ED	1NN- DTW _I	1NN- DTW _D	1NN-ED (norm)	1NN-DTW _I (norm)	1NN-DTW _D (norm)	1NN-DTW _A (norm)
	ArticularyWordR.	0.993	0.987	0.987	0.987	0.973	0.97	0.99	0.97	0.98	0.987	0.97	0.98	0.987	0.987
	AtrialFibrillation	0.133	0.133	0.133	0.333	0.267	0.333	0.333	0.267	0.267	0.2	0.267	0.267	0.22	0.267
	BasicMotions	1	1	1	1	0.95	1	1	0.675	1	0.975	0.676	1	0.975	1
	CharacterTrajectories	0.984	0.997	0.994	0.997	0.985	0.988	0.99	0.964	0.969	0.99	0.964	0.969	0.989	0.989
$\chi \perp \chi$	Cricket	0.986	0.968	0.986	0.958	0.917	0.972	1	0.944	0.986	1	0.944	0.986	1	1
	DuckDuckGeese	N/A	N/A	0.675	0.575	0.675	N/A	0.575	0.275	0.55	0.6	0.275	0.55	0.6	0.567
	EigenWorms	N/A	N/A	0.878	0.489	0.504	N/A	0.89	0.55	0.603	0.618	0.549	N/A	0.619	N/A
	Epilepsy	0.964	0.946	0.957	0.971	0.761	0.986	1	0.667	0.978	0.964	0.666	0.978	0.964	0.979
O	Eking	0.981	0.904	0.88	0.904	0.941	0.850	0.964	0.95	0.95	0.95	0.95	0.95 N/A	0.93	0.95
CNAATE parforms the best	FaceDetection	0.399	0.575	0.230	0.525	0.575	0.323 N/A	0.45	0.293	0.504	0.525	0.293	0.5	0.525	0.510
SWATE performs the best	FingerMovements	0.62	0.55	0.528	0.53	0.545	0.59	0.49	0.55	0.515	0.53	0.55	0.52	0.52	0.529
among all basolinos	HandMovementD.	0.554	0.365	0.27	0.378	0.365	0.324	0.365	0.279	0.306	0.231	0.278	0.306	0.231	0.224
annong an basennes,	Handwriting	0.421	0.335	0.533	0.357	0.286	0.322	0.605	0.371	0.509	0.607	0.2	0.316	0.286	0.601
especially on FEG/MEG	Heartbeat	0.741	0.615	0.737	0.751	0.663	0.756	0.727	0.62	0.659	0.717	0.619	0.658	0.717	0.571
	InsectWingbeat	N/A	N/A	0.16	0.208	0.167	N/A	N/A	0.128	N/A	0.115	0.128	N/A	N/A	N/A
applications	JapaneseVowels	0.965	0.924	0.989	0.965	0.976	0.973	0.973	0.924	0.959	0.949	0.924	0.959	0.949	0.959
applications	Libras	0.849	0.834	0.867	0.85	0.856	0.89	0.878	0.833	0.894	0.872	0.833	0.894	0.87	0.879
	LSST	0.582	0.568	0.558	0.568	0.373	0.674	0.59	0.456	0.575	0.551	0.456	0.575	0.551	0.551
	MotorImagery	0.59	0.59	0.54	0.59	0.51	N/A	0.51	0.39	N/A	0.5	0.51	N/A	0.5	0.5
	N/ATOPS	0.922	0.87	0.944	0.939	0.889	0.956	0.87	0.86	0.85	0.883	0.85	0.85	0.883	0.883
	PEMS-SF	0.803	0.744	0.688	0.751	0.699	N/A	N/A	0.705	0.734	0.711	0.705	0.734	0.711	0.73
	PenDigits	0.98	0.98	0.983	0.98	0.978	0.975	0.948	0.973	0.939	0.977	0.973	0.939	0.977	0.977
	Phoneme RacketSports	0.177	0.19	0.240	0.175	0.11	0.19	0.19	0.104	0.151	0.151	0.104	0.151	0.151	0.151
	SelfRegulationSCP1	0.849	0.874	0.802	0.730	0.803	0.875	0.71	0.771	0.842	0.803	0.771	0.765	0.805	0.858
	SelfRegulationSCP2	0.567	0.539	0.556	0.55	0.472	N/A	0.46	0.483	0.533	0.539	0.483	0.533	0.539	0.539
	SpokenArabicDigits	0.979	0.967	0.956	0.983	0.99	0.982	0.982	0.967	0.96	0.963	0.967	0.959	0.963	0.963
	StandWalkJump	0.533	0.4	0.4	0.4	0.067	0.2	0.333	0.2	0.333	0.2	0.2	0.333	0.2	0.333
	UWaveGestureLibrary	0.897	0.869	0.884	0.894	0.891	0.8	0.916	0.881	0.868	0.903	0.81	0.868	0.903	0.9
	Avg. Rank	3.85	6.19	5.9	4.73	7.33	5.45	4.66	9.3	7.43	6.37	9.37	7.88	6.83	6.21
	Wins (Ties)	11	3	6	5	2	5	8	0	2	2	0	2	1	2

Performance Comparison for MTS classification over UEA MTS archive

Objectives

- 2. Effectiveness of Spatial Modelling Block (SMB)
 - 27 datasets from UEA archive in which SMATE has successfully executed
 - SMATE with SMB Vesrsus SMATE without SMB:
 - [17 Wins | 8 Ties | 2 Losses]
 - SMB Versus others:
 - Squeez-and-Excitation (SE) in MLSTM-FCNs [Karim et al., Neural Networks'19]
 - Random Dimension Permutation (**RDP**) in TapNet [Zhang et al., AAAI'20]

Objectives

3. Effectiveness over competitors of Semi-supervised representation learning

Four datasets on different domains from UEA Archive¹

- *ArticularyWordR*. (Motion)
- *Epilepsy* (Human Activity)
- *Heartbeat* (Audio Spectra)
- *SelfRegulationSCP1* (EEG/MEG)

Baselines:

- **1NN-DTW-D** [Chen et al., KDD'13]
 - Initially designed for UTS
 - We adjust the distance measure with DTW_D which is designed for MTS
- USRL [Franceschi et al., NeurIPS'19]: SVM on unsupervised representation
- Semi-TapNets [Zhang et al., AAAI'20]: Learning unlabeled samples via Attentional Prototype Network
- MTL [Javed et al., PAKDD'20]: Multi-task learning with self-supervised features from forecasting task

Conclusion

Experiments

Semi-supervised representation learning

• SVM on learned representation

SMATE performs generally the best among all semi-supervised models, especially under weak supervision

Objectives

4. Computational Efficiency

Factors	Dataset	(N, M, T)			
Number of training epochs	ArticularyWordRecognition	(275, 9, 144)			
TS length (T)	EthanolConcentration	(261, 3, 1751)			
Number of TS instance (N)	LSST	(2459 , 6, 36)			
Number of variables (M)	PEMS-SF	(267, 963 , 144)			

Only compare with the Deep Learning models:

- MLSTM-FCNs [Karim et al., Neural Networks'19]
- USRL[Franceschi et al., NeurIPS'19]
- **TapNet** [Zhang et al., AAAI'20]
- CA-SFCN [Hao et al. IJCAI'20]

Conclusion

Experiments

Computational Efficiency

Objectives

- 5. Visualization & Interpretation of the Representation Space
- Interpretable for the effect of the weak supervision
- Interpretable for the classification results

(a) Without any regularization

08/12/2021

adjustment of the class centroids

(d) Regularization step 3: unsupervised adjustment of the class centroids

Figure: The t-SNE visualization of the representation space for the *Epilepsy* dataset. We set the supervised ratio to 0.1. The colors of the embeddings represent their inherent labels, which are not fully adopted for training. The class centroids are marked by \star .

Conclusion

- SMATE allows learning a validated Spatio-temporal representation on MTS
 - Spatial Modelling Block (SMB) captures the **evolving interactions** between 1-D segments i.e., *Spatial Dynamics*, which represent better the *spatial interactions* than the State-of-the-art

Experimental

Results

- SMATE allows an efficient representation learning and classification for MTS
- SMATE learns an interpretable representation for:
 - The effect of the weak supervision
 - The classification results
- SMATE allows weak supervision on the embedding space
 - Combine both labelled and unlabelled samples
 - A low amount of labelled samples give promising classification result

Github page

Thank you for your attention

References

- 1. L. Wei and E. Keogh, "Semi-supervised time series classification," in Proc. ACM SIGKDD'06.
- 2. M. N. Nguyen, X. L. Li, and S. K. Ng, "Positive unlabeled learning for time series classification," in IJCAI, 2011.
- 3. Y. Chen, B. Hu, E. Keogh, and G. E. A. P. A. Batista, "DTW-D: Time Series Semi-Supervised Learning from a Single Example," in KDD'13.
- 4. P. Schäefer and U. Leser, "Multivariate Time Series Classification with WEASEL+MUSE, AALTD'18.
- 5. F. Karim, S. Majumdar, H. Darabi, and S. Harford, "Multivariate lstm-fcns for time series classification," Neural Networks, vol. 116, 2019.
- 6. J.-Y. Franceschi, A. Dieuleveut, and M. Jaggi, "Unsupervised Scalable Representation Learning for Multivariate Time Series," NeurIPS 2019.
- 7. Y. Hao and H. Cao, "A New Attention Mechanism to Classify Multi- variate Time Series," in IJCAI, 2020.
- 8. X. Zhang, Y. Gao, J. Lin, and C.-T. Lu, "TapNet: Multivariate Time Series Classification with Attentional Prototypical Network," in AAAI'20.
- 9. S. Jawed, J. Grabocka, and L. Schmidt-Thieme, "Self-Supervised Learning for Semi-Supervised Time Series Classification," in PAKDD'20.
- 10.M. Shokoohi-Yekta, B. Hu, H. Jin, J. Wang, and E. Keogh, "Generalizing DTW to the multi-dimensional case requires an adaptive approach HHS Public Access," Data Min Knowl Discov, vol. 31, no. 1, pp. 1–31, 2017.